1.已知橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a≥2b>0),則橢圓C的離心率的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

分析 運(yùn)用a,b,c 的關(guān)系和離心率公式,結(jié)合已知不等式,即可得到所求范圍.

解答 解:由a≥2b可得a2≥4b2,
又b2=a2-c2
可得a2≥4a2-4c2,即為4c2≥3a2,
即c≥$\frac{\sqrt{3}}{2}$a,
即有e=$\frac{c}{a}$≥$\frac{\sqrt{3}}{2}$,
由0<e<1,可得$\frac{\sqrt{3}}{2}$≤e<1.
故答案為:[$\frac{\sqrt{3}}{2}$,1).

點(diǎn)評 本題考查橢圓的方程和性質(zhì),主要考查橢圓的離心率的范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知2y•logy4-2y-1=0,$\sqrt{lo{g}_{x}\sqrt{5x}}$•log5x=-1,問是否存在一個正整數(shù)P,使P=$\sqrt{\frac{1}{x}-y}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖:設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右兩個焦點(diǎn)分別為F1,F(xiàn)2,短軸的上端點(diǎn)為B,短軸上的兩個三等分點(diǎn)為P,Q,且F1PF2Q為正方形,若過點(diǎn)B作此正方形的外接圓的切線在x軸上的一個截距為-$\frac{3\sqrt{2}}{4}$,則此橢圓方程的方程為$\frac{x^2}{10}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知兩個不同的平面α,β和兩條不重合的直線m,n,則下列命題正確的是( 。
A.若m∥n,n?α,則m∥αB.若α⊥β,α∩β=n,m⊥n,則m⊥β
C.若m?α,n?α,m∥β,n∥β,則α∥βD.若m⊥β,m?α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的各項為正值且首項為1,a2=2,Sn為其前n項和.函數(shù)f(x)=an•an+2x+a2n+1cosx在x=$\frac{π}{2}$處的切線平行于x軸.
(1)求an和Sn
(2)設(shè)bn=log2an+1,數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和為Tn,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖把橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的長軸AB分成8分,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,…P7七個點(diǎn),F(xiàn)是橢圓的一個焦點(diǎn),則|P1F|+|P2F|+…+|P7F|=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知F1(-c,0),F(xiàn)2(c,0)為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的兩個焦點(diǎn),若該橢圓與圓x2+y2=2c2有公共點(diǎn),則此橢圓離心率的取值范圍是$[\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.直線l:x-2y+2=0過橢圓的上焦點(diǎn)F1和一個頂點(diǎn)B,該橢圓的離心率為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ),
(1)若θ=0,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求f(x)的值域;
(2)若f(x)的圖象關(guān)于原點(diǎn)對稱,且θ∈(0,π),求θ的值.

查看答案和解析>>

同步練習(xí)冊答案