已知tanα=
xsinβ
1-xcosβ
,tanβ=
ysinα
1-ycosα
,求證:
sinα
sinβ
=
x
y
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:把所給的兩個(gè)等式兩邊取倒數(shù),再把兩個(gè)等式左右邊分別相減,再整理即可證得結(jié)論.
解答: 證明:∵已知tanα=
sinα
cosα
=
xsinβ
1-xcosβ
,tanβ=
sinβ
cosβ
=
ysinα
1-ycosα
,
cosα
sinα
=
1-xcosβ
xsinβ
cosβ
sinβ
=
1-ycosα
ysinα

兩式相減可得
cosα
sinα
-
cosβ
sinβ
=
1
xsinβ
-
cosβ
sinβ
-(
1
ysinα
-
cosα
sinα
),
1
ysinα
=
1
xsinβ
,∴xsinβ=ysinα,
sinα
sinβ
=
x
y
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,式子的變形是解題的關(guān)鍵和難點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

據(jù)IEC(國(guó)際電工委員會(huì))調(diào)查顯示,小型風(fēng)力發(fā)電項(xiàng)目投資較少,且開(kāi)發(fā)前景廣闊,但受風(fēng)力自然資源影響,項(xiàng)目投資存在一定風(fēng)險(xiǎn).根據(jù)測(cè)算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:
風(fēng)能分類 一類風(fēng)區(qū) 二類風(fēng)區(qū)
平均風(fēng)速m/s 8.5~10 6.5~8.5
假設(shè)投資A項(xiàng)目的資金為x(x≥0)萬(wàn)元,投資B項(xiàng)目資金為y(y≥0)萬(wàn)元,調(diào)研結(jié)果是:未來(lái)一年內(nèi),位于一類風(fēng)區(qū)的A項(xiàng)目獲利30%的可能性為0.6,虧損20%的可能性為0.4;位于二類風(fēng)區(qū)的B項(xiàng)目獲利35%的可能性為0.6,虧損10%的可能性是0.1,不賠不賺的可能性是0.3.
(1)記投資A,B項(xiàng)目的利潤(rùn)分別為ξ和η,試寫出隨機(jī)變量ξ與η的分布列和期望Eξ,Eη;
(2)某公司計(jì)劃用不超過(guò)100萬(wàn)元的資金投資于A,B項(xiàng)目,且公司要求對(duì)A項(xiàng)目的投資不得低于B項(xiàng)目,根據(jù)(1)的條件和市場(chǎng)調(diào)研,試估計(jì)一年后兩個(gè)項(xiàng)目的平均利潤(rùn)之和z=Eξ+Eη的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a2=-7,S6=-24.
(1)求等差數(shù)列{an}的前n項(xiàng)和Sn;
(2)當(dāng)n為何值時(shí),數(shù)列{
Sn+100
n
}有最小項(xiàng),并求出最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在雙曲線x2-y2=4上有一點(diǎn)P,F(xiàn)1、F2是雙曲線的兩個(gè)焦點(diǎn),且∠F1PF2=90°,求△F1PF2的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式:2x2+kx-k≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tanα+1
tanα
=4,
(1)求sin2α的值;
(2)求cos2α的值;
(3)求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>0,y>0,且
x
x
+
y
)=3
y
x
+5
y
),求
2x+2
xy
+3y
x-
xy
+y
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如下:
甲公司某員工A 乙公司某員工B
3 9 6 5 8 3 3 2 3 4 6 6 6 7 7
0 1 4 4 2 2 2
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7元.
(Ⅰ)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);
(Ⅱ)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的項(xiàng)a3,a5是方程2x2+11x+10=0的兩個(gè)根,則a32+a52=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案