分析 根據(jù)垂徑定理可知圓心在圓中弦的垂直平分線上,所以利用中點(diǎn)坐標(biāo)公式分別找出弦OM1和OM2的中點(diǎn)坐標(biāo)和各自的斜率,然后根據(jù)兩直線垂直時(shí)斜率乘積為-1找出弦OM1和OM2的垂直平分線的斜率,即可寫出兩垂直平分線的方程,然后聯(lián)立兩直線方程求出兩垂直平分線的交點(diǎn)坐標(biāo)即為圓心的坐標(biāo),再然后利用兩點(diǎn)間的距離公式求出圓心到O點(diǎn)的距離即為圓的半徑.
解答 解:AB的中點(diǎn)坐標(biāo)為($\frac{1}{2}$,$\frac{1}{2}$),直線AB的斜率為1,所以垂直平分線的斜率為-1
則線段AB的垂直平分線方程為y-$\frac{1}{2}$=-(x-$\frac{1}{2}$)化簡得x+y-1=0①;
同理得到AC的中點(diǎn)坐標(biāo)為(2,1),直線AC的斜率為$\frac{1}{2}$,所以垂直平分線的斜率為-2
則線段AC的垂直平分線方程為y-1=-2(x-2)化簡得2x+y-5=0②.
聯(lián)立①②解得x=4,y=-3,則圓心坐標(biāo)為(4,-3),圓的半徑r=5
則圓的標(biāo)準(zhǔn)方程為:(x-4)2+(y+3)2=25.1
點(diǎn)評 此題考查學(xué)生會利用中點(diǎn)坐標(biāo)公式求線段的中點(diǎn)坐標(biāo),掌握兩直線垂直時(shí)斜率滿足的關(guān)系,會根據(jù)一點(diǎn)和斜率寫出直線的方程,靈活運(yùn)用兩點(diǎn)間的距離公式化簡求值,會根據(jù)圓心坐標(biāo)與半徑寫出圓的標(biāo)準(zhǔn)方程,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{25}$$-\frac{{y}^{2}}{16}$=1 | B. | $\frac{{y}^{2}}{25}$$-\frac{{x}^{2}}{16}$=1 | C. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 | D. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com