1.下列函數(shù)中值域為[0,+∞)的是( 。
A.y=3xB.y=|x|C.y=x2-6x+7D.$y=\frac{8}{x}$

分析 分別求出四個選項中函數(shù)的值域得答案.

解答 解:函數(shù)y=3x的定義域為R,值域為R;
函數(shù)y=|x|的定義域為R,值域為[0,+∞);
函數(shù)y=x2-6x+7的定義域為R,值域為[-2,+∞);
函數(shù)$y=\frac{8}{x}$的定義域為{x|x≠0},值域為{y|y≠0}.
故選:B.

點評 本題考查基本初等函數(shù)值域的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,若$\frac{tanA}{tanB}$=$\frac{si{n}^{2}A}{si{n}^{2}B}$,則△ABC為( 。
A.等腰三角形B.直角三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=cos2x+2$\sqrt{3}$sinxcosx,則f($\frac{π}{12}$)=( 。
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,動點A在函數(shù)y=$\frac{1}{x}$(x<0)的圖象上,動點B在函數(shù)y=$\frac{2}{x}$(x>0)的圖象上,過點A、B分別向x軸、y軸作垂線,垂足分別為A1、A2、B1、B2,若|A1B1|=4,則|A2B2|的最小值為$\frac{3+2\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{π}{3}$,則向量$\overrightarrow{{e}_{1}}$在$\overrightarrow{{e}_{2}}$方向上的射影為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各組函數(shù)中,表示同一個函數(shù)的是( 。
A.y=1,y=$\frac{x}{x}$B.y=x,y=$\root{3}{{x}^{3}}$
C.y=$\sqrt{x-1}$×$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$D.y=|x|,$y={({\sqrt{x}})^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),0<α<β<π.
(Ⅰ)若|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{2}$,求證$\overrightarrow a$⊥$\overrightarrow b$;
(Ⅱ)設(shè)$\overrightarrow c$=(0,1),若$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow c$,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3.
(1)求$|{5\vec a-\vec b}|$;
(2)若$\overrightarrow{a}$+λ$\overrightarrow$與λ$\overrightarrow{a}$-$\overrightarrow$互相垂直,求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題中真命題有(1),(5)
(1)已知集合A={1,2},$B=\left\{{x\left|{x=\frac{1}{a}}\right.}\right\}$,若B⊆A,則a的值為$1或\frac{1}{2}$
(2)已知$f(x)=\left\{\begin{array}{l}({2-a})x+1,({x<1})\\{a^x},({x≥1})\end{array}\right.$(a>0,a≠1)是R上的增函數(shù),那么a的取值范圍是(1,2)
(3)函數(shù)$f(x)=\frac{1}{x}$在定義域(-∞,0)∪(0,∞)上是減函數(shù)
(4)$\left\{{x∈N\left|{\frac{6}{6-x}∈N}\right.}\right\}=\left\{{\frac{6}{6-x}∈N\left|{x∈N}\right.}\right\}$
(5)定義在R上的函數(shù)f(x)滿足f(x+2)=3f(x),當(dāng)x∈[0,2]時,f(x)=x2-2x,則x∈[-4,-2]時,f(x)的最小值是$-\frac{1}{9}$.
(6)若A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},則A∪B=C.

查看答案和解析>>

同步練習(xí)冊答案