分析 (Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過討論k的奇偶性,從而得到函數(shù)的單調(diào)區(qū)間;(Ⅱ)先求出函數(shù)的導(dǎo)數(shù),利用倒敘相加從而證出結(jié)論.
解答 解:(Ⅰ)由已知得x>0且${f^/}(x)=2x-{(-1)^k}•\frac{2}{x}$,
當(dāng)k為奇數(shù)時(shí),則f′(x)>0,則f(x)在(0,+∞)上是增函數(shù),
當(dāng)k為偶數(shù)時(shí),則${f^/}(x)=2x-\frac{2}{x}=\frac{2(x+1)(x-1)}{x}$,
所以當(dāng)x∈(0,1)時(shí),f′(x)<0,當(dāng)x∈(1,+∞)時(shí),f′(x)>0,
故當(dāng)k為偶數(shù)時(shí),f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù).
(Ⅱ)由已知得,${f^/}(x)=2x+\frac{2}{x}$(x>0),
所以左邊=${(2x+\frac{2}{x})^n}-{2^{n-1}}•(2{x^n}+\frac{2}{x^n})$
=${2^n}(C_n^1{x^{n-2}}+C_n^2{x^{n-4}}+…+C_n^{n-2}\frac{1}{{{x^{n-4}}}}+C_n^{n-1}\frac{1}{{{x^{n-2}}}})$,
令S=$C_n^1{x^{n-2}}+C_n^2{x^{n-4}}+…+C_n^{n-2}\frac{1}{{{x^{n-4}}}}+C_n^{n-1}\frac{1}{{{x^{n-2}}}}$,
倒序相加得$2S=C_n^1({x^{n-2}}+\frac{1}{{{x^{n-2}}}})+C_n^2({x^{n-4}}+\frac{1}{{{x^{n-4}}}})+…+C_n^{n-2}(\frac{1}{{{x^{n-4}}}}+{x^{n-4}})+C_n^{n-1}(\frac{1}{{{x^{n-2}}}}+{x^{n-2}})$
≥2$(C_n^1+C_n^2+…+C_n^{n-2}+C_n^{n-1})$
=2(2n-2),可得S≥(2n-2),
所以:[f′(x)]n-2n-1f′(xn)≥2n(2n-2),成立.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,考查不等式的證明,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | |
B. | 直角三角形 | |
C. | 鈍角三角形 | |
D. | 可能是銳角三角形,也可能是鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | [1n3,+∞) | C. | [1,ln3] | D. | [-1,ln3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120 | B. | -120 | C. | -240 | D. | 240 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{4}$ | B. | $\frac{9}{4}$ | C. | 2 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com