某高中畢業(yè)學(xué)年,在高校自主招生期間,把學(xué)生的平時(shí)成績(jī)按“百分制”折算,排出前n名學(xué)生,并對(duì)這n名學(xué)生按成績(jī)分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.
(Ⅰ)請(qǐng)?jiān)趫D中補(bǔ)全頻率分布直方圖;
(Ⅱ)若B大學(xué)決定在成績(jī)高的第4,5組中用分層抽樣的方法抽取6名學(xué)生,并且分成2組,每組3人進(jìn)行面試,求95分(包括95分)以上的同學(xué)在同一個(gè)小組的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)等差數(shù)列的性質(zhì)計(jì)算出各組人數(shù),從而求出各組頻率,即可補(bǔ)全頻率分布直方圖;
(Ⅱ)列舉抽樣的所有可能,找出符合題意得基本事件個(gè)數(shù),利用概率個(gè)數(shù)計(jì)算即可.
解答: 解:(Ⅰ)∵第四組的人數(shù)為60,
∴總?cè)藬?shù)為:5×60=300,
由直方圖可知,
第五組人數(shù)為:0.02×5×300=30人,
又∵
60-30
2
=15
為公差,
∴第一組人數(shù)為:45人,
第二組人數(shù)為:75人,
第三組人數(shù)為:90人.
∴第1至第4組的頻率分別為:0.15,0.25,0.30,0.20.
如圖可補(bǔ)全頻率分布直方圖.
(Ⅱ)第四組中抽取人數(shù):
6
90
×60=4
人,
第五組中抽取人數(shù):
6
90
×30=2
人,
∴95分以上的共2人.
設(shè)第四組抽取的四人為A1,A2,A3,A4,
第五組抽取的2人為B1,B2,
這六人分成兩組有兩種情況,
情況一:B1,B2在同一小組有4種可能結(jié)果,
情況二:B1,B2不在同一小組有6種可能結(jié)果,
總共10種可能結(jié)果,
∴兩人在一組的概率為
4
10
=
2
5
點(diǎn)評(píng):本題考查等差數(shù)列性質(zhì)與頻率分布直方圖的綜合應(yīng)用,古典概型概率的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)h(x)=2sin(2x+
π
4
)的圖象與函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,1)對(duì)稱,則函數(shù)f(x)可由h(x)經(jīng)過(guò)怎樣的變換得到( 。
A、向上平移2個(gè)單位,向右平移
π
4
個(gè)單位
B、向上平移2個(gè)單位,向左平移
π
4
的單位
C、向下平移2個(gè)單位,向右平移
π
4
個(gè)單位
D、向下平移2個(gè)單位,向左平移
π
4
的單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:
x2+1
-ax<1
,(a>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某地區(qū)共有100萬(wàn)人,現(xiàn)從中隨機(jī)抽查800人,發(fā)現(xiàn)有700人不吸煙,100人吸煙.這100位吸煙者年均煙草消費(fèi)支出情況的頻率分布直方圖如圖.將頻率視為概率,回答下列問(wèn)題:
(Ⅰ)在該地區(qū)隨機(jī)抽取3個(gè)人,求其中至少1人吸煙的概率;
(Ⅱ)據(jù)統(tǒng)計(jì),煙草消費(fèi)稅大約為煙草消費(fèi)支出的40%,該地區(qū)為居民支付因吸煙導(dǎo)致的疾病治療等各種費(fèi)用年均約為18800萬(wàn)元.問(wèn):當(dāng)?shù)責(zé)煵菹M(fèi)稅是否足以支付當(dāng)?shù)鼐用褚蛭鼰煂?dǎo)致的疾病治療等各種費(fèi)用?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知lg(3x)+lgy=lg(x+y+1),求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的方程x2+tx-1=0的兩根為α,β(α<β,函數(shù)f(x)=
2x+t
x2+1
).
(1)用t表示f(α)+f(β);
(2)證明:f(x)在[α,β]上是增函數(shù);
(3)對(duì)任意正數(shù)x1,x2,求證:-2β<f(
x1α+x2β
x1+x2
)+f(
x1β+x2α
x1+x2
)<-2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是曲線y=x3-ax上不同的兩點(diǎn),過(guò)點(diǎn)A,B兩點(diǎn)的切線都與直線AB垂直,求證:|a|≥
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:cos(-π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程|
(y+3)2+x2
-
(y-3)2+x2
|=6表示的曲線的類型是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案