9.已知函數(shù)f(x)=lg(-x2+x+2)的定義域為S,T={x|x∈Z},則S∩T=( 。
A.{0,1,2}B.{-1,0,1}C.{0,1}D.{0,-1}

分析 根據(jù)對數(shù)的真數(shù)式大于0,構(gòu)造不等式,解出S,進而可得答案.

解答 解:由-x2+x+2>0得:x∈(-1,2),
∴S=(-1,2),
∴S∩T={0,1},
故選:C

點評 本題考查的知識點是函數(shù)的定義域,不等式的解法,集合的交集運算,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|{2}^{x}-1|,x<2}\\{\frac{3}{x-1},x≥2}\end{array}\right.$,若函數(shù)g(x)=f(x)-loga8有兩個不同的零點,則實數(shù)a的取值范圍是( 。
A.[$\frac{1}{8}$,1)∪(1,2]B.(2,8)C.(2,+∞)D.(2,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,角A,B,C的對邊分別是a,b,c,若a=2,b-c=1,△ABC的面積為$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=$-\frac{13}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知鈍角α滿足cosα=-$\frac{1}{3}$,則sin$\frac{α}{2}$等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若0<α<π,0<β<π,并且8cos2α-9tan2β+$\sqrt{3}$(8sinα+6tanβ)=17,求兩個角α,β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)是以5為周期的奇函數(shù),f(-3)=4且sinα=$\frac{\sqrt{3}}{2}$,則f(4cos2α)=( 。
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是( 。
A.4cm3B.6cm3C.$\frac{16}{3}c{m^3}$D.$\frac{20}{3}c{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在正方體ABCD-A1B1C1D1中,求證:
(1)B1D⊥平面A1BC1
(2)記B1D與平面A1BC1的交點H,求A1B1與平面A1BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為求使不等式1+2+3+…+n<60成立的最大正整數(shù)n,設(shè)計了如圖所示的算法,則圖中“        ”處應(yīng)填入( 。
A.i+2B.i+1C.iD.i-1

查看答案和解析>>

同步練習(xí)冊答案