4.過曲線y=2x上兩點(diǎn)(0,1),(1,2)的割線的斜率為1.

分析 根據(jù)斜率公式計(jì)算即可.

解答 解:由平均變化率的幾何意義知k=$\frac{2-1}{1-0}$=1.
故答案為:1

點(diǎn)評(píng) 本題考查了平均變化率的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{4}$+y2=1的左右焦點(diǎn)為F1,F(xiàn)2,P為橢圓橢圓上任一點(diǎn),則|PF1|•|PF2|的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.兩個(gè)好朋友相約周天在9點(diǎn)到10點(diǎn)到銀川市圖書館看書,先到者等候另一個(gè)人20分鐘方可離去.試求這兩人能會(huì)面的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)$f(\frac{1}{x})={x^2}-\frac{2}{x}+lnx(x>0)$,則f'(1)=( 。
A.2B.-2C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=xn,若f′(-1)=3,則n的值為( 。
A.3B.-4C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l過點(diǎn)P(-2,5),且斜率為$-\frac{3}{4}$,則直線l的方程為3x+4y-14=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,b=4,cosB=$\frac{1}{4}$.則邊c的長(zhǎng)度為( 。
A.4B.2C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)如圖1,在平行四邊形ABCD中,點(diǎn)E是對(duì)角線DB的延長(zhǎng)線上一點(diǎn),且OB=BE.記$\overrightarrow{AB}=\overrightarrow a\;,\;\overrightarrow{AD}=\overrightarrow b$,試用向量$\overrightarrow a\;,\;\overrightarrow b$表示$\overrightarrow{AE}$.
(2)若正方形ABCD邊長(zhǎng)為1,點(diǎn)P在線段AC上運(yùn)動(dòng),求$\overrightarrow{AP}•(\overrightarrow{PB}+\overrightarrow{PD})$的取值范圍.
(3)設(shè)$\overrightarrow{OA}=\;\overrightarrow a,\;\overrightarrow{OB}=\overrightarrow b$,已知$\overrightarrow a•\overrightarrow b=|{\overrightarrow a-\overrightarrow b}|=2$,當(dāng)△AOB的面積最大時(shí),求∠AOB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的導(dǎo)數(shù).
(1)y=3xex-log3x+ln3
(2)$y=\frac{{\sqrt{x}+{x^5}+cosx}}{x^2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案