分析 (1)利用誘導公式,同角三角函數(shù)關系式化簡等式左邊等于右邊即可證明.
(2)由已知及同角三角函數(shù)關系式可求sinα,由tanα=$\frac{sinα}{cosα}$即可求值得解.
解答 解:(1)左邊=$\frac{tan(π-α)•cos(2π-α)•sin(\frac{π}{2}+α)}{cos(-α-π)}$=$\frac{(-tanα)•cosα•cosα}{-cosα}$=sinα=右邊.得證.
(2)∵f($\frac{π}{2}$-α)=-$\frac{3}{5}$,即sin($\frac{π}{2}$-α)=cosα=-$\frac{3}{5}$,α是第二象限角,
∴sin$α=\sqrt{1-co{s}^{2}α}$=$\sqrt{1-(-\frac{3}{5})^{2}}$=$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{\frac{4}{5}}{-\frac{3}{5}}$=-$\frac{4}{3}$.
點評 本題主要考查了誘導公式,同角三角函數(shù)關系式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com