A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由條件求得cotx的范圍,再利用兩角和差的三角公式化簡f(x)為 $\frac{1}{2}$+$\frac{1}{2}$cotx,從而求得它的最大值.
解答 解:由x∈[$\frac{π}{4}$,$\frac{5π}{12}$],可得cotx∈[cot$\frac{5π}{12}$,1].
再根據(jù)cot$\frac{5π}{12}$=$\frac{1}{tan(\frac{π}{6}+\frac{π}{4})}$=$\frac{1}{\frac{tan\frac{π}{6}+tan\frac{π}{4}}{1-tan\frac{π}{6}tan\frac{π}{4}}}$=$\frac{3-\sqrt{3}}{3+\sqrt{3}}$=2-$\sqrt{3}$,故cotx∈[2-$\sqrt{3}$,1]
f(x)=$\frac{\sqrt{2}cosxsin(x+\frac{π}{4})}{sin2x}$=$\frac{\sqrt{2}cosx•(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx)}{sin2x}$=$\frac{sinxcosx{+cos}^{2}x}{sin2x}$=$\frac{1}{2}$+$\frac{{cos}^{2}x}{2sinxcosx}$=$\frac{1}{2}$+$\frac{1}{2}$cotx,
故當x=$\frac{π}{4}$時,f(x)取得最大值為1,
故選:A.
點評 本題主要考查兩角和差的三角公式,余切函數(shù)的定義域和值域,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (¬p)∨q | B. | p∧q | C. | (¬p)∧(¬q) | D. | (¬p)∨(¬q) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com