分析 求出圓的圓心坐標與半徑,利用圓心到直線的距離與半弦長求解三角形的面積,然后求出最大值即可.
解答 解:圓C:(x-a)2+(y-a)2=1(a>0)的圓心(a,a)半徑為1,
圓心到直線y=2x的距離d=$\frac{|2a-a|}{\sqrt{5}}$=$\frac{a}{\sqrt{5}}$,半弦長為:$\sqrt{1{-(\frac{a}{\sqrt{5}})}^{2}}$=$\sqrt{{1-\frac{a}{5}}^{2}}$,
∴△CPQ的面積S=$\frac{1}{2}$•2$\sqrt{{1-\frac{a}{5}}^{2}}$•$\frac{a}{\sqrt{5}}$=$\sqrt{(1-\frac{{a}^{2}}{5})•\frac{{a}^{2}}{5}}$,故當$\frac{{a}^{2}}{5}$=$\frac{1}{2}$,即a=$\sqrt{\frac{5}{2}}$$\frac{\sqrt{10}}{2}$時,S取得最大值為$\frac{1}{2}$,
故答案為:$\frac{\sqrt{10}}{2}$.
點評 本題考查直線與圓的位置關(guān)系的應(yīng)用,三角形面積的最值的求法,點到直線的距離公式的應(yīng)用等知識,考查分析問題解決問題的能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1或1 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | -2 | 4 | $\sqrt{2}$ |
y | -2$\sqrt{3}$ | 0 | -4 | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4,5,6} | B. | {1,2,3} | C. | {4,5} | D. | {4,5,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-1,3) | C. | (-∞,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an+1=$\frac{1}{2}{a_n}$+150 | B. | an+1=$\frac{1}{3}{a_n}$+200 | C. | an+1=$\frac{1}{5}{a_n}$+300 | D. | an+1=$\frac{2}{5}{a_n}$+180 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com