A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{2}$ |
分析 根據(jù)題意,點(diǎn)$(-5,-\frac{15}{4})$在拋物線的準(zhǔn)線上,結(jié)合拋物線的性質(zhì),可得p=10,進(jìn)而可得拋物線的焦點(diǎn)坐標(biāo),可得c的值由點(diǎn)(-2,-1)在雙曲線的漸近線上,可得漸近線方程,進(jìn)而可得b的值,由雙曲線的性質(zhì),可得a,b,進(jìn)而可得答案.
解答 解:根據(jù)題意,雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為$(-5,-\frac{15}{4})$,
即點(diǎn)$(-5,-\frac{15}{4})$在拋物線的準(zhǔn)線上,則p=10,
則拋物線的焦點(diǎn)為(5,0);
因?yàn)殡p曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與拋物線y2=2px(p>0)有相同的焦點(diǎn),
所以c=5,
因?yàn)辄c(diǎn)$(-5,-\frac{15}{4})$在雙曲線的漸近線上,則其漸近線方程為y=±$\frac{3}{4}$x,
所以a=4,b=3
所以e=$\frac{c}{a}$=$\frac{5}{4}$
故選B.
點(diǎn)評(píng) 本題考查雙曲線與拋物線的性質(zhì),注意題目“雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為$(-5,-\frac{15}{4})$”這一條件的運(yùn)用是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i>5 | B. | i≥5 | C. | i>6 | D. | i≥6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | $\frac{15}{2}$ | C. | $\frac{23}{3}$ | D. | $\frac{47}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com