13.若直線l的斜率k<$\sqrt{3}$,則傾斜角θ的取值范圍是($\frac{π}{2}$,π)∪[0,$\frac{π}{3}$).

分析 由直線l的斜率k<$\sqrt{3}$,由此能求出直線傾斜角的取值范圍.

解答 解:直線的傾斜角為α,
滿足k<$\sqrt{3}$,∴$\frac{π}{2}$<θ<π或0≤θ<$\frac{π}{3}$.
∴直線傾斜角的取值范圍是($\frac{π}{2}$,π)∪[0,$\frac{π}{3}$).
故答案為:($\frac{π}{2}$,π)∪[0,$\frac{π}{3}$).

點評 本題考查直線的傾斜角的取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=3x2+5x+2.
(1)求函數(shù)f(x)的定義域和值域;
(2)分別求出$f(11)和f({\frac{1}{x+1}})$并化簡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x),若在定義域內(nèi)存在x0,使得f(-x0)=-f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(1)若a,b,c∈R,證明函數(shù)f(x)=ax3+bx2+cx-b必有局部對稱點;
(2)是否存在常數(shù)m,使得定義在區(qū)間[-1,2]上的函數(shù)f(x)=4x+2x+m有局部對稱點?若存在,求出m的范圍,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.曲線ρ=4cosθ與ρ=2的交點極坐標(biāo)為(2,$\frac{π}{3}$)或(2,$\frac{5π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=asin(2ωx+φ)+b(a>0,ω>0,-$\frac{π}{2}$<φ<0)的周期為π,最大值為$\frac{3}{2}$,最小值為-$\frac{1}{2}$,且x=$\frac{π}{3}$是函數(shù)的一條對稱軸.
(1)求函數(shù)的解析式;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍;
(3)將函數(shù)f(x)的圖象縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的$\frac{1}{2}$.得到函數(shù)g(x)的圖象,求函數(shù)g(x)的對稱中心和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)g(x)=f(x)-k在[0,$\frac{π}{2}$]上有兩個不同的零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且|$\overrightarrow{a}$+$\overrightarrow$|≤x2-2x恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.比較大小
(1)1.2-2.3<1.2-2
(2)0.25.4>0.28.6
(3)0.3-3.1>0.62.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l與直線y=$\frac{1}{2}$x+4互相垂直,直線l的截距與直線y=x+6的截距相同,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案