11.f(x-1)=x2-2x,則$f(\sqrt{2})$=1.

分析 直接利用函數(shù)的解析式求解函數(shù)值即可.

解答 解:f(x-1)=x2-2x,則$f(\sqrt{2})$=f[($\sqrt{2}+1$)-1]=$(\sqrt{2}+1)$2-2$(\sqrt{2}+1)$=3+2$\sqrt{2}-2\sqrt{2}-2$=1.
故答案為:1.

點(diǎn)評(píng) 本題考查函數(shù)的解析式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$+$\overrightarrow$=(1,$\sqrt{2}$),則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知tanx=$\sqrt{3}$,求x的取值集合;
(2)在單位圓中畫(huà)出滿足sinα=$\frac{1}{2}$的角α的終邊,并作出其正弦線、余弦線和正切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.?dāng)?shù)列{an}的首項(xiàng)al=1,且對(duì)任意n∈N*,an與an+1恰為方程x2-bnx+2n=0的兩個(gè)根.
(1)求數(shù)列(an}和數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知實(shí)數(shù)數(shù)列{an}滿足:an+2=|an+1|-an(n=1,2,…),a1=a,a2=b,記集合M={an|n∈N*}.
(Ⅰ)若a=1,b=2,用列舉法寫(xiě)出集合M;
(Ⅱ)若a<0,b<0,判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
(Ⅲ)若a≥0,b≥0,且a+b≠0,求集合M的元素個(gè)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)f(x)是定義在R上的函數(shù),且滿足f(x+2)=f(x+1)-f(x),如果f(1)=lg$\frac{3}{2}$,f(2)=lg15,則f(2016)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=ax3-$\frac{x}$+c(a,b∈R,c∈Z),選取a,b,c的一組值計(jì)算f(1)和f(-1),所得出的正確結(jié)果一定不可能是( 。
A.-2和2B.-3和5C.6和2D.3和4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知△ABC內(nèi)接于單位圓,則長(zhǎng)為sinA、sinB、sinC的三條線段( 。
A.能構(gòu)成一個(gè)三角形,其面積大于△ABC面積的$\frac{1}{4}$
B.能構(gòu)成一個(gè)三角形,其面積等于△ABC面積的$\frac{1}{4}$
C.能構(gòu)成一個(gè)三角形,其面積小于△ABC面積的$\frac{1}{4}$
D.不一定能構(gòu)成三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.當(dāng)x∈(2,+∞)時(shí),函數(shù)y=lg(ax-1)有意義.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案