20.i為虛數(shù)單位,則復(fù)數(shù)$\frac{1-2i}{i}$的共軛復(fù)數(shù)是( 。
A.-1+2iB.1-2iC.-2+iD.2-i

分析 先化簡(jiǎn)復(fù)數(shù)z,再求z的共軛復(fù)數(shù)$\overline{z}$.

解答 解:復(fù)數(shù)z=$\frac{1-2i}{i}$=$\frac{i(1-2i)}{{i}^{2}}$=-2-i,
∴復(fù)數(shù)z的共軛復(fù)數(shù)是$\overline{z}$=-2+i.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的化簡(jiǎn)與共軛復(fù)數(shù)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)α為第二象限,若sinα+cosα=-$\frac{\sqrt{10}}{5}$,則tan(α+$\frac{π}{4}$)等于( 。
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,且點(diǎn)$(1,\frac{{\sqrt{3}}}{2})$在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l與橢圓E交于A、B兩點(diǎn),且線段AB的垂直平分線經(jīng)過(guò)點(diǎn)$(0,\frac{1}{2})$.求△AOB(O為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng)(即橫坐標(biāo)為奇數(shù)項(xiàng),縱坐標(biāo)為偶數(shù)項(xiàng)),按如此規(guī)律下去.a(chǎn)2016等于( 。
A.1007B.1008C.-1008D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖所示,圓O是△ABC的外接圓,BA=m,BC=$\frac{4}{m}$,∠ABC=60°,若$\overrightarrow{BO}=x\overrightarrow{BA}$+y$\overrightarrow{BC}$,則x+y的最大值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=$\sqrt{2}$c,且A=C+$\frac{π}{2}$
(Ⅰ)求cosC的值;
(Ⅱ)當(dāng)b=1時(shí),求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<2),設(shè)點(diǎn)A(2,0),B(0,b)與直線AB斜率相同的直線與橢圓交于M,N兩點(diǎn),設(shè)MN中點(diǎn)的軌跡為C.
(1)當(dāng)b2=3時(shí),求曲線C的方程;
(2)已知拋物線y2=2px(p>0)的焦點(diǎn)與橢圓右焦點(diǎn)重合,若拋物線與曲線C有有且只有一個(gè)交點(diǎn),求b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知曲線C:f(x)=2x3-3px2
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若曲線C在A,B兩點(diǎn)處的切線平行,求證:曲線C關(guān)于線段AB中點(diǎn)M對(duì)稱(chēng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知(1-x)6=a0+a1x+a2x2+…+a6x6,則|a0|+|a1|+…+|a6|=64.

查看答案和解析>>

同步練習(xí)冊(cè)答案