16.運行如圖所示的程序框圖,若輸出結(jié)果為$\frac{15}{8}$,則判斷框中應(yīng)該填的條件是( 。
A.k>5B.k>6C.k>7D.k>8

分析 根據(jù)程序框圖進(jìn)行模擬運算即可.

解答 解:根據(jù)程序框圖可知該程序的功能為計算S=1+$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$
即S=1+1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{k}$-$\frac{1}{k+1}$=2-$\frac{1}{k+1}$,
由2-$\frac{1}{k+1}$=$\frac{15}{8}$,解得k=7,
即當(dāng)k=7時不滿足條件.當(dāng)k=8時滿足條件退出循環(huán),
故條件為k>7,
故選:C.

點評 本題主要考查程序框圖的識別和運行,根據(jù)條件進(jìn)行模擬運算是解決本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知復(fù)數(shù)z滿足(3-4i)z=25,則z=3+4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)=loga(1+x)+loga(3-x)(a>0且a≠1),已知f(1)=2.
(1)求a的值及f(x)的定義域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若關(guān)于a,b的代數(shù)式f(a,b)滿足:
①f(a,a)=a
②f(ka,kb)=kf(a,b)
③f(a1+a2,b1+b2)=f(a1,b1)+f(a2,b2
④f(a,b)=f(b,$\frac{a+b}{2}$)
則f(x,y)=( 。
A.$\frac{x-2y}{3}$B.$\frac{2x+y}{3}$C.$\frac{x+2y}{3}$D.$\frac{2x-y}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)θ是第三象限角,且|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,則$\frac{θ}{2}$是第四象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點為F,若過點F且傾斜角為450的直線與雙曲線的左支沒有公共點,則此雙曲線的離心率的取值范圍是$1<e≤\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知△ABC中,$|\overrightarrow{BC}|=6$,$\overrightarrow{AB}•\overrightarrow{AC}=16$,D為邊BC的中點,則$|\overrightarrow{AD}|$=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,則$\overrightarrow{PA}•\overrightarrow{PB}$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,Sn為數(shù)列{an}的前n項和,n∈N*
(1)若an+1-an=pn(p≠0),且a1,2a2,3a3成等差數(shù)列,求p的值及an
(2)若Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N*),求S100

查看答案和解析>>

同步練習(xí)冊答案