分析 由題意,sin2A+sin2B=1,利用“1”的代換,結(jié)合基本不等式,即可求出$\frac{4}{si{n}^{2}A}$+$\frac{9}{si{n}^{2}B}$的最小值.
解答 解:由題意,sin2A+sin2B=1,
∴$\frac{4}{si{n}^{2}A}$+$\frac{9}{si{n}^{2}B}$=($\frac{4}{si{n}^{2}A}$+$\frac{9}{si{n}^{2}B}$)(sin2A+sin2B)=$\frac{4si{n}^{2}B}{si{n}^{2}A}$+$\frac{9si{n}^{2}A}{si{n}^{2}B}$+13≥2$\sqrt{36}$+13=25,
∴$\frac{4}{si{n}^{2}A}$+$\frac{9}{si{n}^{2}B}$的最小值為25.
故答案為:25.
點評 本題考查求$\frac{4}{si{n}^{2}A}$+$\frac{9}{si{n}^{2}B}$的最小值,利用“1”的代換,結(jié)合基本不等式是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -26或$\frac{8}{3}$ | B. | -1或3 | C. | 8或-$\frac{8}{3}$ | D. | -8或$\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{37}$ | B. | $\sqrt{33}$ | C. | $\sqrt{47}$ | D. | $\sqrt{57}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com