分析 (Ⅰ)分別令n=1,2,3代入計(jì)算,即可得到所求值;
(Ⅱ)當(dāng)n≥2時(shí),an=$\frac{{T}_{n}}{{T}_{n-1}}$,代入等式,再由等差數(shù)列的定義,即可得證;
(Ⅲ)運(yùn)用等差數(shù)列的通項(xiàng)公式可得$\frac{1}{{T}_{n}}$=n+1,可得an=$\frac{n}{n+1}$,bn=$\frac{{a}_{n}}{{n}^{2}+n}$=$\frac{1}{(n+1)^{2}}$<$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,以及不等式的性質(zhì),即可得證.
解答 解:(Ⅰ)數(shù)列{an}的前n項(xiàng)積為Tn,且Tn=1-an,
∴當(dāng)n=1時(shí),a1=1-a1,解得a1=$\frac{1}{2}$,
當(dāng)n=2時(shí),a1a2=1-a2,解得a2=$\frac{2}{3}$,
當(dāng)n=3時(shí),a1a2a3=1-a3,解得a3=$\frac{3}{4}$;
(Ⅱ)證明:當(dāng)n≥2時(shí),an=$\frac{{T}_{n}}{{T}_{n-1}}$,
Tn=1-an(n∈N*),
即為Tn=1-$\frac{{T}_{n}}{{T}_{n-1}}$,
可得$\frac{1}{{T}_{n}}$-$\frac{1}{{T}_{n-1}}$=1,
則數(shù)列{$\frac{1}{{T}_{n}}$}為首項(xiàng)為2,1為公差的等差數(shù)列;
(Ⅲ)證明:由(Ⅱ)可得$\frac{1}{{T}_{n}}$=2+n-1=n+1,
則Tn=1-an=$\frac{1}{n+1}$,
可得an=$\frac{n}{n+1}$,
bn=$\frac{{a}_{n}}{{n}^{2}+n}$=$\frac{1}{(n+1)^{2}}$<$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
則{bn}前n項(xiàng)和Sn=b1+b2+b3+…+bn-1+bn
<$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<$\frac{3}{4}$,
故Sn<$\frac{3}{4}$.
點(diǎn)評 本題考查了遞推式的應(yīng)用、數(shù)列通項(xiàng)公式的求法,注意運(yùn)用定義法,考查數(shù)列的求和方法:裂項(xiàng)相消求和,以及放縮法證明不等式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{15}{16}$ | B. | $\frac{15}{16}$ | C. | -$\frac{7}{8}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-1,0)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 8 | C. | 7 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 98 | B. | -98 | C. | -196 | D. | 196 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
愛好 | 不愛好 | 合計(jì) | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計(jì) | 30 | 50 | 80 |
P(x2≥k) | 0.050 | 0.010 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com