1.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),f′(x)為其導(dǎo)函數(shù).當(dāng)x>0時,xf′(x)+f(x)>0,且f(1)=0,則不等式f(x)>0的解集為(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

分析 由題意構(gòu)造函數(shù)g(x)=xf (x),再由導(dǎo)函數(shù)的符號判斷出函數(shù)g(x)的單調(diào)性,由函數(shù)f(x)的奇偶性得到函數(shù)g(x)的奇偶性,由f(1)=0得g(1)=0、還有g(shù)(-1)=0,再通過奇偶性進(jìn)行轉(zhuǎn)化,利用單調(diào)性求出不等式得解集.

解答 解:設(shè)g(x)=xf(x),
則g'(x)=[xf(x)]'=x'f(x)+xf'(x)=f(x)+xf′(x)>0恒成立,
∴函數(shù)g(x)在區(qū)間(0,+∞)上是增函數(shù),
∵f(x)是定義在R上的偶函數(shù),∴g(x)=xf(x)是R上的奇函數(shù),
∴函數(shù)g(x)在區(qū)間(-∞,0)上是增函數(shù),
∵f(1)=0,∴f(-1)=0;  即g(-1)=0,g(1)=0
∴xf(x)>0化為g(x)>0,
當(dāng)x>0時,不等式f(x)>0等價于g(x)>0,即g(x)>g(1),即x>1;
當(dāng)x<0時,不等式f(x)>0等價于g(x)<0,即g(x)<g(-1),即x<-1.
故所求的解集為(-∞,-1)∪(1,+∞);
故選:A.

點評 本題考查了由條件構(gòu)造函數(shù)和用導(dǎo)函數(shù)的符號判斷函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性和奇偶性的關(guān)系對不等式進(jìn)行轉(zhuǎn)化,注意函數(shù)值為零的自變量的取值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若方程9x+(6-a)3x+4=0的根為α,β,則α+β=log34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足$\frac{1}{2}$f(x)+xf′(x)>0,f(1)=0,則不等式f(2-x)>0的解集是(  )
A.(-∞,1)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,-6),且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=(  )
A.-4B.2$\sqrt{10}$C.2$\sqrt{5}$D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項均不相等的等差數(shù)列{an}的前n項和為Sn,S10=45,且a3,a5,a9恰為等比數(shù)列{bn}的前三項,記cn=(bn-am)(bn+1-am).
(1)分別求數(shù)列{an}、{bn}的通項公式;
(2)若m=17,求cn取得最小值時n的值;
(3)當(dāng)c1為數(shù)列{cn}的最小項時,m有相應(yīng)的可取值,我們把所有am的和記為A1;…;當(dāng)ci為數(shù)列{cn}的最小項時,m有相應(yīng)的可取值,我們把所有am的和記為Ai;…,令Tn=A1+A2+…An,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點 O(0,0),A(2,1),B(-2,4),向量$\overrightarrow{OM}$=$\overrightarrow{OA}$+λ$\overrightarrow{OB}$.
(I )若點M在第二象限,求實數(shù)λ的取值范圍
(II)若λ=1,判斷四邊形OAMB的形狀,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)Tn是數(shù)列{an}的前n項之積,并滿足:Tn=1-an(n∈N*).
(Ⅰ)求a1,a2,a3
(Ⅱ)證明數(shù)列{$\frac{1}{{T}_{n}}$}等差數(shù)列;
(Ⅲ)令bn=$\frac{{a}_{n}}{{n}^{2}+n}$,證明{bn}前n項和Sn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=-x2+2ax+3a2
(1)當(dāng)a=-1時,求不等式f(x)<-5的解集;
(2)若f(x)>0對任意實數(shù)x∈[-1,1]都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.水平放置的圓柱形物體的三視圖是( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案