19.已知三個(gè)球的半徑R1,R2,R3滿滿足R1+R3=2R2,記它們的表面積分別為S1,S2,S3,若S1=1,S3=9,則S2=4.

分析 表示出三個(gè)球的表面積,求出三個(gè)半徑,利用R1+R3=2R2,得出$\sqrt{{S}_{1}}$+$\sqrt{{S}_{3}}$=2$\sqrt{{S}_{2}}$,代入計(jì)算可得結(jié)論.

解答 解:因?yàn)镾1=4πR12,所以R1=$\frac{\sqrt{{S}_{1}}}{2\sqrt{π}}$,
同理:R2=$\frac{\sqrt{{S}_{2}}}{2\sqrt{π}}$,R3=$\frac{\sqrt{{S}_{3}}}{2\sqrt{π}}$,
由R1+R3=2R2,得$\sqrt{{S}_{1}}$+$\sqrt{{S}_{3}}$=2$\sqrt{{S}_{2}}$,
因?yàn)镾1=1,S3=9,所以2$\sqrt{{S}_{2}}$=1+3,
所以S2=4.
故答案為:4.

點(diǎn)評(píng) 本題考查球的表面積,考查計(jì)算能力,利用R1+R3=2R2,得出$\sqrt{{S}_{1}}$+$\sqrt{{S}_{3}}$=2$\sqrt{{S}_{2}}$是關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=4sinxcosx(x∈R),將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少有20個(gè)零點(diǎn),在所有滿足上述條件的[a,b]中,b-a的最小值為( 。
A.10πB.$\frac{29π}{3}$C.$\frac{28π}{3}$D.$\frac{55π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn=2n+1-2;數(shù)列{bn}滿足6n2-(t+3bn)n+2bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)①試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
②在①結(jié)論下,若對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入bk個(gè)2,符到一個(gè)數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題
p1:設(shè)函數(shù)f(x)=ax2+bx+c(a>0),且f(1)=-a,則f(x)在[0,2]上必有零點(diǎn);
p2:設(shè)a,b∈R,則“a>b”是“a|a|>b|b|”的充分不必要條件.
則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命題是( 。
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖程序運(yùn)行的結(jié)果是( 。
A.5,13B.8,13C.5,8D.8,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求函數(shù)f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.給出下列命題:
①存在實(shí)數(shù)α,使sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{3}{2}$
②函數(shù)y=sin(2x+$\frac{3π}{2}$)是偶函數(shù).
③函數(shù)y=|tan(2x+$\frac{π}{4}$)|的周期為$\frac{π}{2}$.
④若α、β是第一象限的角,且α>β,則sinα>sinβ
⑤函數(shù)y=sin2x-3cosx+2的最大值為6
其中正確命題的是②③.
(把你認(rèn)為正確命題的序號(hào)填在答題紙的相應(yīng)位置上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(文科學(xué)生做)已知函數(shù)f(x)=sinx-$\sqrt{3}$cosx.
(1)求f(x)在(0,π)上的單調(diào)遞增區(qū)間;
(2)若f(θ)=-$\frac{6}{5}$(0<θ<π),求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且c=2,C=60°,則$\frac{a+b}{sinA+sinB}$=$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案