8.如圖,網(wǎng)格紙上小正方形的邊長為2,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是(  )
A.B.C.12πD.14π

分析 由三視圖知該幾何體是一個圓柱中切去:四分之一的圓柱的一半,由三視圖求出幾何元素的長度,由柱體的體積公式求出幾何體的體積.

解答 解:根據(jù)三視圖可知幾何體是一個圓柱中切去:四分之一的圓柱的一半,
且底面圓的半徑為2,高為4,
∴幾何體的體積V=π×22×4-$\frac{1}{4}×π×{2}^{2}×4×\frac{1}{2}$=14π,
故選:D.

點評 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,注意三視圖中實線與虛線的在直觀圖中的位置,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{2x}{x+1}$(x>0).
(Ⅰ)求證:函數(shù)f(x)在(0,+∞)上為增函數(shù);
(Ⅱ)當(dāng)x∈(0,1]時,若tf(2x)≥2x-2恒成立,求實數(shù)t的取值范圍;
(Ⅲ)設(shè)g(x)=log2f(x),試討論函數(shù)F(x)=|g(x)|2-(3m+1)|g(x)|+3m(m∈R)的零點情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線C:y2=4x的焦點F,線段PQ為拋物線C的一條弦.
(1)若弦PQ過焦點F,求證:$\frac{1}{FP}+\frac{1}{FQ}$為定值;
(2)求證:x軸的正半軸上存在定點M,對過點M的任意弦PQ,都有$\frac{1}{{M{P^2}}}+\frac{1}{{M{Q^2}}}$為定值;
(3)對于(2)中的點M及弦PQ,設(shè)$\overrightarrow{PM}=λ\overrightarrow{MQ}$,點N在x軸的負(fù)半軸上,且滿足$\overrightarrow{NM}⊥({\overrightarrow{NP}-λ\overrightarrow{NQ}})$,求N點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=x3+ax2+bx(a,b∈R)的圖象與x軸相切于一點A(m,0)(m≠0),且f(x)的極大值為$\frac{1}{2}$,則m的值為( 。
A.$-\frac{2}{3}$B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一個無上蓋容器的三視圖如圖所示,則該幾何體的表面積為(5+$\sqrt{5}$)π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.A、B、O是拋物線E:y2=2px(p>0)上不同三點,其中O是坐標(biāo)原點,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,直線AB交x軸于C點,D是線段OC的中點,以E上一點M為圓心、以|MD|為半徑的圓被y軸截得的弦長為d,下列結(jié)論正確的是(  )
A.d>|OC|>2pB.d<|OC|<2pC.d=|OC|=2pD.d<|OC|=2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知△ABC的頂點B,C在橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是( 。
A.10B.20C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=cos2x+sinx
(1)求f($\frac{2π}{3}$)的值;
(2)求f(x)在[-$\frac{π}{2}$,$\frac{π}{2}}$]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點A是拋物線y2=4x的對稱軸與準(zhǔn)線的交點,點B是其焦點,點P在該拋物線上,且滿足|PA|=m|PB|,當(dāng)m取得最大值時,點P恰在以A,B為焦點的雙曲線上,則雙曲線的實軸長為( 。
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.$\sqrt{2}$+1D.2$\sqrt{2}$+2

查看答案和解析>>

同步練習(xí)冊答案