19.如圖,用5種不同顏色給圖中的A、B、C、D四個區(qū)域涂色,規(guī)定一個區(qū)域只涂一種顏色,相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有180種.

分析 由于規(guī)定一個區(qū)域只涂一種顏色,相鄰的區(qū)域顏色不同,可分步進(jìn)行,區(qū)域A有5種涂法,B有4種涂法,C有3種,D有3種涂法,根據(jù)乘法原理可得結(jié)論

解答 解:由題意,由于規(guī)定一個區(qū)域只涂一種顏色,相鄰的區(qū)域顏色不同,可分步進(jìn)行,區(qū)域A有5種涂法,B有4種涂法,C有3種,D有3種涂法
∴共有5×4×3×3=180種不同的涂色方案.
故答案為:180.

點(diǎn)評 本題以實(shí)際問題為載體,考查計數(shù)原理的運(yùn)用,關(guān)鍵搞清是分類,還是分步.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{17π}{12}$<x<$\frac{7π}{4}$,則$\frac{sin2x+2si{n}^{2}x}{1-tanx}$=-$\frac{28}{75}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),兩個焦點(diǎn)分別為F1、F2,若在第一象限內(nèi)雙曲線上存在一點(diǎn)P,使得在△PF1F2中,∠PF1F2=30°,∠PF2F1=90°,則此雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.$y=±\sqrt{3}x$D.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某校有6間不同的電腦室,每天晚上至少開放2間,求不同安排方案的種數(shù),現(xiàn)有四位同學(xué)分別給出下列四個結(jié)果①$C_6^2$;②26-7;③$C_6^3+2C_6^4+C_6^5+C_6^6$,其中正確的結(jié)論是( 。
A.B.②與③C.①與②D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)6件產(chǎn)品中有4件合格品2件不合格品,從中任意取2件,則其中至少一件是不合格品的概率為(  )
A.0.4B.0.5C.0.6D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從2010名學(xué)生中選50人組成參觀團(tuán),先用簡單隨機(jī)抽樣方法剔除10人,再將其余2000人從0到1999編號,按等距系統(tǒng)抽樣方法選取,若第一組采用抽簽法抽到的號碼是30,則最后一組入選的號碼是( 。
A.1990B.1991C.1989D.1988

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.求值:${sin^3}(π-α)-sin(π+α){sin^2}(\frac{π}{2}+α)+cos(\frac{3π}{2}-α)$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.隨機(jī)詢問某大學(xué)40名不同性別的大學(xué)生在購買食物時是否讀營養(yǎng)說明,得到如下2×2列聯(lián)表:
讀營養(yǎng)說明不讀營養(yǎng)說明合計
16420
81220
合計241640
(1)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯誤的概率不超過0.01的前提下認(rèn)為“性別與是否讀營養(yǎng)說明之間有關(guān)系”?
(2)若采用分層抽樣的方法從讀營養(yǎng)說明的學(xué)生中隨機(jī)抽取3人,則男生和女生抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從中隨機(jī)抽取2人,求恰有一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|x2-2x-3≤0},B={x|-2≤x<2},則A∪B=(  )
A.[-2,3]B.[-3,2]C.[-1,2]D.[-1,2)

查看答案和解析>>

同步練習(xí)冊答案