17.已知g(x)=ex(cosx+a)(a∈R)是R上的增函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.[2,+∞)B.(2,+∞)C.[$\sqrt{2}$,+∞)D.($\sqrt{2}$,+∞)

分析 求函數(shù)的導(dǎo)數(shù),要使函數(shù)單調(diào)遞增,則f′(x)≥0立,然后求出實(shí)數(shù)a的取值范圍.

解答 解:因?yàn)閒(x)=ex(cosx+a),所以f′(x)=ex(cosx+a-sinx).
要使函數(shù)單調(diào)遞增,則f′(x)≥0成立.
即-sinx+a+cosx≥0恒成立.
所以a≥sinx-cosx,
因?yàn)閟inx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$)
所以-$\sqrt{2}$≤sinx-cosx≤$\sqrt{2}$,
所以a≥$\sqrt{2}$,
故選:C.

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的基本運(yùn)算以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,注意當(dāng)函數(shù)單調(diào)遞增時(shí),f'(x)≥0恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=$\sqrt{x+1}$-ln(2-x)的定義域?yàn)椋ā 。?table class="qanwser">A.(2,+∞)B.(-1,+∞)C.[-1,2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知變量x,y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\end{array}\right.$,$\frac{{x}^{2}+{y}^{2}}{xy}$的取值范圍為[2,$\frac{10}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.直棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在AB上.
(1)求證:AC⊥B1C;
(2)若D是AB中點(diǎn),求證:AC1∥平面B1CD;
(3)當(dāng)$\frac{BD}{AB}$=$\frac{3}{7}$時(shí),求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)幾何體被切割后剩下部分的幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.18B.20C.$18+2\sqrt{3}$D.$18+4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)是偶函數(shù),它在[0,+∞)上是減函數(shù),若f(lgx)>f(2),則x的取值范圍是(  )
A.$(\frac{1}{100},1)$B.(0,$\frac{1}{100}$)∪(1,+∞)C.$(\frac{1}{100},100)$D.(0,1)∪(100,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(1)求實(shí)數(shù)a、b的值;
(2)若不等式$f({log_2}k)>f(\frac{3}{2})$成立,求實(shí)數(shù)k的取值范圍;
(3)對(duì)于任意滿足p=x0<x1<x2<…<xn-1<xn=q(n∈N,n≥3)的自變量x0,x1,x2,…,xn-1,xn,如果存在一個(gè)常數(shù)M>0,使得定義在區(qū)間[p,q]上的一個(gè)函數(shù)m(x),有|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱m(x)為區(qū)間[p,q]上的有界變差函數(shù),試判斷f(x)是否區(qū)間[0,3]上的有界變差函數(shù),若是,求出M的最小值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.正三棱錐P-ABC中,(△ABC是正三角形,點(diǎn)P在平面ABC的射影是△ABC的中心)側(cè)棱PA與底面ABC成60°角,若AB=2$\sqrt{3}$,則P到平面ABC的距離是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:函數(shù)y=2-ax+1(a>0,a≠1)恒過定點(diǎn)(-1,1):命題q:若函數(shù)f(x-1)為偶函數(shù),則f(x)的圖象關(guān)于直線x=1對(duì)稱.下列命題為真命題的是( 。
A.p∧qB.?p∧?qC.?p∧qD.p∧?q

查看答案和解析>>

同步練習(xí)冊(cè)答案