11.某單位抽獎(jiǎng)活動(dòng)的規(guī)則是:代表通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該代表中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),則該代表中獎(jiǎng)的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

分析 確定滿足0≤x≤1,0≤y≤1點(diǎn)的區(qū)域,由條件$\left\{\begin{array}{l}{\stackrel{2x-y-1≤0}{0≤x≤1}}\\{0≤y≤1}\end{array}\right.$得到的區(qū)域?yàn)閳D中的陰影部分,計(jì)算面積,可求該代表中獎(jiǎng)的概率.

解答 解:由已知0≤x≤1,0≤y≤1,點(diǎn)(x,y)在如圖所示的正方形OABC內(nèi),

由條件$\left\{\begin{array}{l}{\stackrel{2x-y-1≤0}{0≤x≤1}}\\{0≤y≤1}\end{array}\right.$得到的區(qū)域?yàn)閳D中的陰影部分
由2x-y-1=0,令y=0可得x=$\frac{1}{2}$,令y=1可得x=1
∴在x,y∈[0,1]時(shí)滿足2x-y-1≤0的區(qū)域的面積為S陰=$\frac{1}{2}$×(1+$\frac{1}{2}$)×1=$\frac{3}{4}$,
∴該代表中獎(jiǎng)的概率為:$\frac{\frac{3}{4}}{1}$=$\frac{3}{4}$.
故選:C.

點(diǎn)評(píng) 本題考查概率與統(tǒng)計(jì)知識(shí),考查程序框圖的應(yīng)用,考查概率的計(jì)算,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,半徑R=2的球O中有一內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與圓柱的側(cè)面積之差等于8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)是定義在R上的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=x2,當(dāng)x>0時(shí),f(x+1)=f(x)+f(1),若直線y=kx與函數(shù)y=f(x)的圖象恰有7個(gè)不同的公共點(diǎn),則實(shí)數(shù)k的取值范圍為(2$\sqrt{2}$-1,2$\sqrt{6}$-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知方程x2+(a-2)x+5-a=0的兩個(gè)根均大于2,則實(shí)數(shù)a的取值范圍是(-5,-4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某初級(jí)中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法抽取10人參加某項(xiàng)調(diào)查,考慮選用簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡(jiǎn)單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段.如果抽得號(hào)碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A.①③都可能為分層抽樣B.②④都不能為分層抽樣
C.②③都不能為系統(tǒng)抽樣D.①④都可能為系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過雙曲線x2-$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)且與x軸垂直的直線,交該雙曲線的兩條漸近線于A,B兩點(diǎn),則|AB|=4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.冪函數(shù)f(x)的圖象過點(diǎn)(2,4)且f(m)=16,則實(shí)數(shù)m的所有可能的值為(  )
A.4B.±2C.±4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若全集U={0,1,2,3,4,5},M={0,1},則∁UM=( 。
A.{0,1}B.{2,3,4,5}C.{0,2,3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.設(shè)函數(shù)H1(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,H2(x)=$\left\{\begin{array}{l}{g(x),f(x)≥g(x)}\\{f(x),f(x)<g(x)}\end{array}\right.$,記H1(x)的最小值為A,H2(x)的最大值為B,則A-B(  )
A.16B.-16C.a2+2a-16D.a2-2a-16

查看答案和解析>>

同步練習(xí)冊(cè)答案