19.已知方程x2+(a-2)x+5-a=0的兩個根均大于2,則實數(shù)a的取值范圍是(-5,-4].

分析 設(shè)f(x)=x2+(a-2)x+5-a,根據(jù)題意利用一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),求得a的范圍.

解答 解:設(shè)f(x)=x2+(a-2)x+5-a,則由方程x2+(a-2)x+5-a=0的兩個根均大于2,
可得$\left\{\begin{array}{l}{△{=(a-2)}^{2}-4(5-a)≥0}\\{-\frac{a-2}{2}>2}\\{f(2)=a+5>0}\end{array}\right.$,求得-5<a≤-4,
故答案為:(-5,-4].

點評 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,E為AB的中點.求:
(1)異面直線BD1與CE所成角的余弦值;
(2)點A到平面A1EC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1的焦點在x軸上,以橢圓右頂點為焦點的拋物線標準方程為y2=16x.
(1)求橢圓C的離心率
(2)若動直線l的斜率為$-\frac{{\sqrt{2}}}{2}$,且與橢圓C交于不同的兩點M、N,已知點Q$(-\sqrt{2},0)$,求$\overrightarrow{QM}•\overrightarrow{QN}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.一個五面體的三視圖如圖,正視圖是等腰直角三角形,側(cè)視圖是直角三角形,部分邊長如圖所示,則此五面體的體積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)a=log26,b=log412,c=log618,則( 。
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=m•2x+2•3x,m∈R.
(1)當m=-9時,求滿足f(x+1)>f(x)的實數(shù)x的范圍;
(2)若$f(x)≤{(\frac{9}{2})^x}$對任意的x∈R恒成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某單位抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,則該代表中獎的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)-cos(2x+$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,t)(t≠0),$\overrightarrow{a}$與$\overrightarrow$的夾角為α,若f(α)=1,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.直線x+a2y+6=0與直線(a-2)x+3ay+2a=0平行,則實數(shù)a的值為(  )
A.3或-1B.0或-1C.-3或-1D.0或3

查看答案和解析>>

同步練習冊答案