8.已知數(shù)列{an}的前n項和為Sn=n(2n+1),則a2=7.

分析 Sn=n(2n+1),分別令n=1,2,解出即可得出.

解答 解:∵Sn=n(2n+1),
分別令n=1,2,可得:a1=S1=3,a1+a2=2×(2×2+1)=10.
則a2=7.
故答案為:7.

點評 本題考查了等差數(shù)列的求和公式、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在如圖的空間直角坐標(biāo)系中,正方體ABCD-A1B1C1D1的棱長為1,P是線段BD1上的一點,且BP=2PD1,則點P的坐標(biāo)是( 。
A.($\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)B.($\frac{2}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)D.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l⊥平面α,直線m?平面β,下列命題中正確的是( 。
A.α∥β⇒l∥mB.α⊥β⇒l∥mC.l∥m⇒α⊥βD.l⊥m⇒α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)p:x≤k,q:1≤x<2,若p是q的必要條件,則實數(shù)k的取值范圍是k≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,內(nèi)角A,B,C所對邊分別為a,b,c,且a=3b,sinB=$\frac{1}{4}$,則sinA等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知公差不為0的等差數(shù)列{an}的前n項和為Sn,且S3=9,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足bn=(an-1)2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的平面向量,向量$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$-μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{AB}$∥$\overrightarrow{AC}$,則有( 。
A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則(  )
A.ω=2,φ=$\frac{π}{6}$B.ω=2,φ=$\frac{π}{3}$C.ω=1,φ=$\frac{π}{6}$D.ω=1,φ=$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在區(qū)間[-3,3]上任取一個實數(shù)x,則sin$\frac{π}{6}$x≥$\frac{1}{2}$的概率為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案