10.命題“對(duì)任意的x∈R,x2≥0”的否定是( 。
A.對(duì)任意的x∈R,x2<0B.不存在x∈R,x2<0
C.存在x∈R,x2<0D.存在x∈R,x2≥0

分析 直接利用全稱命題的否定是特稱命題想寫出結(jié)果即可.

解答 解:因?yàn)槿Q命題的否定是特稱命題,所以命題“對(duì)任意的x∈R,x2≥0”的否定是:存在x∈R,x2<0,
故選:C.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足an=$\frac{3}{4}$Sn+$\frac{1}{2}$(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn
(3)若不等式Tn+$\frac{a}{n}$•22n+1-$\frac{2}{9}$>0的n∈N*恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a、b都是非零實(shí)數(shù),則等式|a+b|=|a|+|b|的成立的充要條件是( 。
A.a≥bB.a≤bC.$\frac{a}$≥0D.$\frac{a}$≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,PA切⊙O于點(diǎn)A,割線PBC經(jīng)過圓心O,PB=1,PA=$\sqrt{3}$,OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OD,則PD的長為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“m=±1”是“復(fù)數(shù)(1-m2)+(1+m)i(其中i是虛數(shù)單位)為純虛數(shù)”的( 。
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.集合M={x∈Q|-2≤x≤1},N={x∈R|-1≤x≤2},則M∩N={x∈Q|-1≤x≤1},M∪N={x∈R|-2≤x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2$\sqrt{3}sin(x+\frac{π}{4})cos(x+\frac{π}{4})+2{cos^2}(x-\frac{π}{4})-1$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)設(shè)a,b,c是△ABC中角A,B,C所對(duì)的邊,已知f(A)=$\sqrt{3}$,2acosB=c,且△ABC的面積為$\sqrt{3}$,求邊a的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S8=64,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:$\frac{1}{{S}_{n-1}}$+$\frac{1}{{S}_{n+1}}$$>\frac{2}{{S}_{n}}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的焦點(diǎn)為F1,F(xiàn)2,P為橢圓上一點(diǎn),若|PF1|=2,則|PF2|=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案