19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S8=64,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:$\frac{1}{{S}_{n-1}}$+$\frac{1}{{S}_{n+1}}$$>\frac{2}{{S}_{n}}$(n≥2,n∈N*).

分析 (1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1、公差為d,利用a3=5、S8=64計(jì)算即得結(jié)論;
(2)通過(guò)數(shù)列{an}的首項(xiàng)為1,公差為2可得Sn=n2,從而不等式成立等價(jià)于3n2>1,而3n2>1在n≥1時(shí)恒成立,即得結(jié)論.

解答 (1)解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
則$\left\{\begin{array}{l}{{a}_{3}={a}_{1}+2d=5}\\{{S}_{8}=8{a}_{1}+28d=64}\end{array}\right.$,
解得:a1=1,d=2,
∴數(shù)列{an}的通項(xiàng)an=1+2(n-1)=2n-1;
(2)證明:∵數(shù)列{an}的首項(xiàng)為1,公差為2,
∴Sn=n+2×$\frac{n(n-1)}{2}$=n2,
要證:$\frac{1}{{S}_{n-1}}$+$\frac{1}{{S}_{n+1}}$$>\frac{2}{{S}_{n}}$(n≥2,n∈N*),
即證:$\frac{1}{(n-1)^{2}}$+$\frac{1}{(n+1)^{2}}$>$\frac{2}{{n}^{2}}$,
只需證:[(n+1)2+(n-1)2]n2>2(n2-1)2,
只需證:(n2+1)n2>(n2-1)2,
只需證:3n2>1,
而3n2>1在n≥1時(shí)恒成立,并且以上每步均可逆,
從而不等式$\frac{1}{{S}_{n-1}}$+$\frac{1}{{S}_{n+1}}$$>\frac{2}{{S}_{n}}$(n≥2,n∈N*)恒成立.

點(diǎn)評(píng) 本題考查求數(shù)列的通項(xiàng),考查關(guān)于數(shù)列和的不等式恒成立問(wèn)題,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.?dāng)?shù)列{an}滿足an+an+1=$\frac{1}{2}$(n∈N,n≥1),若a2=1,Sn是{an}的前n項(xiàng)和,則S21的值為(  )
A.-$\frac{1}{2}$B.1C.$\frac{9}{2}$D.-$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.命題“對(duì)任意的x∈R,x2≥0”的否定是( 。
A.對(duì)任意的x∈R,x2<0B.不存在x∈R,x2<0
C.存在x∈R,x2<0D.存在x∈R,x2≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為( 。
A.y=cos2x,x∈RB.y=x3+1,x∈R
C.y=$\frac{{e}^{x}-{e}^{-x}}{2}$,x∈RD.y=log2|x|,x∈R且x≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線y2=2px(p>0)上一點(diǎn)P(3,t)到其焦點(diǎn)的距離為4.
(1)求p的值;
(2)過(guò)點(diǎn)Q(1,0)作兩條直線l1,l2與拋物線分別交于點(diǎn)A、B和C、D,點(diǎn)M,N分別是線段AB和CD的中點(diǎn),設(shè)直線l1,l2的斜率分別為k1,k2,若k1+k2=3,求證:直線MN過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求下列函數(shù)的值域:
(1)y=-$\frac{{x}^{2}-x+2}{{x}^{2}+2}$
(2)y=$\frac{-{x}^{2}}{{x}^{2}+1}$
(3)y=$\sqrt{x-3}$+$\sqrt{{x}^{2}-3x+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)兩向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$滿足|$\overrightarrow{{e}_{1}}$|=2,|$\overrightarrow{{e}_{2}}$|=1,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夾角為60°,
(1)若向量2t$\overrightarrow{{e}_{1}}$+7$\overrightarrow{{e}_{2}}$與向量$\overrightarrow{{e}_{1}}$+t$\overrightarrow{{e}_{2}}$垂直,求實(shí)數(shù)t的值;
(2)若向量2t$\overrightarrow{{e}_{1}}$+7$\overrightarrow{{e}_{2}}$與向量$\overrightarrow{{e}_{1}}$+t$\overrightarrow{{e}_{2}}$平行,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算:sin$\frac{11}{6}$πcos(-$\frac{3}{4}$π)+sin$\frac{5}{6}$πcos(-$\frac{5}{4}$π)+sin$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ln(x+a)+$\frac{2}{x}$,g(x)=lnx.
(1)已知f(x)在[e,+∞)上是單調(diào)函數(shù),求a的取值范圍;
(2)已知m,n,ξ滿足n>ξ>m>0,且g'(ξ)=$\frac{g(n)-g(m)}{n-m}$,試比較ξ與$\sqrt{mn}$的大;
(3)已知a=2,是否存在正數(shù)k,使得關(guān)于x的方程f(x)=kg(x)在[e,+∞)上有兩個(gè)不相等的實(shí)數(shù)根?如果存在,求k滿足的條件;如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案