分析 由等差數(shù)列的求和公式求得數(shù)列{2n+1}的前n項(xiàng)和,代入數(shù)列{$\frac{1}{{S}_{n}}$}后由裂項(xiàng)相消法求得數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和.
解答 解:由題意,Sn=3+5+7+…+(2n+1)=$\frac{(3+2n+1)n}{2}=n(n+2)$,
∴$\frac{1}{{S}_{n}}=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
設(shè)數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為Tn,
則${T}_{n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})=\frac{1}{2}(\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的前n項(xiàng)和,考查了裂項(xiàng)相消法求數(shù)列的和,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相交 | B. | 相切 | C. | 相離 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com