15.已知直線l:mx-y-m+2=0與圓C:x2+y2+4x-4=0交于A,B兩點(diǎn),若△ABC為直角三角形,則m=0或$\frac{12}{5}$.

分析 圓心C(-2,0),半徑r=4$\sqrt{2}$,由直線l:mx-y-m+2=0與圓C:x2+y2+4x-4=0交于A,B兩點(diǎn),△ABC為直角三角形,得到|AB|=8,圓心C(-2,0)到直線l:mx-y-m+2=0的距離為4,由此能求出結(jié)果.

解答 解:圓心C(-2,0),半徑r=$\sqrt{16+16}$=4$\sqrt{2}$,
∵直線l:mx-y-m+2=0與圓C:x2+y2+4x-4=0交于A,B兩點(diǎn),△ABC為直角三角形,
∴|AB|=$\sqrt{{r}^{2}+{r}^{2}}$=$\sqrt{2}r=\sqrt{2}×4\sqrt{2}$=8,
∴圓心C(-2,0)到直線l:mx-y-m+2=0的距離:
d=$\frac{|-2m-0-m+2|}{\sqrt{{m}^{2}+1}}$=$\sqrt{(4\sqrt{2})^{2}-{4}^{2}}$=4,
解得m=0或m=$\frac{12}{5}$.
故答案為:0或$\frac{12}{5}$.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,考查圓、直線方程、點(diǎn)到直線距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若acosB+bcosA=2ccosC,a+b=6,則三角形ABC的面積S△ABC的最大值是( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{9\sqrt{3}}{2}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知極坐標(biāo)系的極點(diǎn)為平面直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,曲線C的直角坐標(biāo)方程為(x+1)2+(y-1)2=2,直線l過點(diǎn)(-1,0),且斜率為$\frac{1}{2}$,射線OM的極坐標(biāo)方程為θ=$\frac{3π}{4}$.
(1)求曲線C和直線l的極坐標(biāo)方程;
(2)已知射線OM與曲線C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的方程為3x+4y-12=0.
(1)直線l1經(jīng)過點(diǎn)P(1,0),且滿足l1∥l,求直線l1的方程;
(2)設(shè)直線l與兩坐標(biāo)軸交于A、B兩點(diǎn),O為原點(diǎn),求△OAB外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xoy中,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,設(shè)曲線C參數(shù)方程為 $\left\{\begin{array}{l}{x=1+cosθ}\\{y=2+sinθ}\end{array}\right.$(θ為參數(shù)),直線l的極坐標(biāo)方程為  3ρcosθ+4ρsinθ=2.
(Ⅰ)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程
(Ⅱ)求曲線C上的動(dòng)點(diǎn)到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,3).
(1)求過點(diǎn)A與BC平行的直線方程.
(2)求過點(diǎn)B,并且在兩個(gè)坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平面直角坐標(biāo)系中,點(diǎn)M的直角坐標(biāo)是$(\sqrt{3},-1)$.若以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,則點(diǎn)M的極坐標(biāo)可以是( 。
A.$(2,\frac{π}{6})$B.$(-2,\frac{5π}{6})$C.$(2,-\frac{5π}{6})$D.$(-2,-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知正方形ABCD的邊長為3,E為CD的中點(diǎn),則$\overrightarrow{AE}•\overrightarrow{BD}$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義方程f(x)=f'(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“新駐點(diǎn)”,如果函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=cosx($x∈(\frac{π}{2},\;π)$)的“新駐點(diǎn)”分別為α,β,γ,則α,β,γ從小到大排列是β、α、φ.

查看答案和解析>>

同步練習(xí)冊(cè)答案