2.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,若acosB+bcosA=2ccosC,a+b=6,則三角形ABC的面積S△ABC的最大值是( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{9\sqrt{3}}{2}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{9}{4}$

分析 由已知條件結(jié)合正弦定理可得cosC,求出sinC,由a+b=6,利用基本不等式可得ab≤9,(當(dāng)且僅當(dāng)a=b=3成立),由三角形面積公式即可得答案.

解答 解:由acosB+bcosA=2ccosC,
得sinAcosB+sinBcosA=2sinCcosC,
即sin(A+B)=sinC=2sinCcosC,
∴cosC=$\frac{1}{2}$,$sinC=\frac{\sqrt{3}}{2}$.
∵a+b=6,可得:6≥2$\sqrt{ab}$,解得:ab≤9,(當(dāng)且僅當(dāng)a=b=3成立),
∴S△ABC=$\frac{1}{2}absinC$≤$\frac{1}{2}×9×\frac{\sqrt{3}}{2}=\frac{9\sqrt{3}}{4}$,(當(dāng)且僅當(dāng)a=b=3成立).
故選:C.

點(diǎn)評 本題主要考查了正弦定理,三角形面積公式,基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知兩曲線f(x)=cosx與g(x)=$\sqrt{3}$sinx的一個交點(diǎn)為P,則點(diǎn)P到x軸的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.離心率為$\frac{{\sqrt{3}}}{2}$,且過點(diǎn)(2,0)的橢圓的標(biāo)準(zhǔn)方程是(  )
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$
C.x2+4y2=1D.$\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式(2x+1)(x-1)≤0的解集為( 。
A.$[{-\frac{1}{2},1}]$B.$[{-1,\frac{1}{2}}]$C.$({-∞,-\frac{1}{2}}]∪[{1,+∞})$D.$({-∞,-1}]∪[{\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.袋中有6個黃色、4個白色的乒乓球,做不放回抽樣,每次任取1個球,取2次,則關(guān)于事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率說法正確的是(  )
A.事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率都等于$\frac{2}{3}$
B.事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率都等于$\frac{4}{15}$
C.事件“直到第二次才取到黃色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于$\frac{4}{15}$
D.事件“直到第二次才取到黃色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C經(jīng)過A(-1,1),且圓心坐標(biāo)為C(1,1).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l經(jīng)過點(diǎn)(2,2),且l與圓C相交所得的弦長為2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖是某工廠對甲乙兩個車間各10名工人生產(chǎn)的合格產(chǎn)品的統(tǒng)計(jì)結(jié)果的莖葉圖.設(shè)甲、乙的中位數(shù)分別為x、x,甲、乙的方差分別為s2、s2,則( 。
A.x<x,s2<s2B.x>x,s2>s2
C.x>x,s2<s2D.x<x,s2>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的偶函數(shù),當(dāng)x>0時,f(x)=lnx-ax,若函數(shù)在定義域上有且僅有4個零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線l:mx-y-m+2=0與圓C:x2+y2+4x-4=0交于A,B兩點(diǎn),若△ABC為直角三角形,則m=0或$\frac{12}{5}$.

查看答案和解析>>

同步練習(xí)冊答案