A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{9\sqrt{3}}{2}$ | C. | $\frac{9\sqrt{3}}{4}$ | D. | $\frac{9}{4}$ |
分析 由已知條件結(jié)合正弦定理可得cosC,求出sinC,由a+b=6,利用基本不等式可得ab≤9,(當(dāng)且僅當(dāng)a=b=3成立),由三角形面積公式即可得答案.
解答 解:由acosB+bcosA=2ccosC,
得sinAcosB+sinBcosA=2sinCcosC,
即sin(A+B)=sinC=2sinCcosC,
∴cosC=$\frac{1}{2}$,$sinC=\frac{\sqrt{3}}{2}$.
∵a+b=6,可得:6≥2$\sqrt{ab}$,解得:ab≤9,(當(dāng)且僅當(dāng)a=b=3成立),
∴S△ABC=$\frac{1}{2}absinC$≤$\frac{1}{2}×9×\frac{\sqrt{3}}{2}=\frac{9\sqrt{3}}{4}$,(當(dāng)且僅當(dāng)a=b=3成立).
故選:C.
點(diǎn)評 本題主要考查了正弦定理,三角形面積公式,基本不等式的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}+{y^2}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$或${x^2}+\frac{y^2}{4}=1$ | ||
C. | x2+4y2=1 | D. | $\frac{x^2}{4}+{y^2}=1$或$\frac{x^2}{4}+\frac{y^2}{16}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-\frac{1}{2},1}]$ | B. | $[{-1,\frac{1}{2}}]$ | C. | $({-∞,-\frac{1}{2}}]∪[{1,+∞})$ | D. | $({-∞,-1}]∪[{\frac{1}{2},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率都等于$\frac{2}{3}$ | |
B. | 事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率都等于$\frac{4}{15}$ | |
C. | 事件“直到第二次才取到黃色球”的概率等于$\frac{2}{3}$,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于$\frac{4}{15}$ | |
D. | 事件“直到第二次才取到黃色球”的概率等于$\frac{4}{15}$,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x甲<x乙,s甲2<s乙2 | B. | x甲>x乙,s甲2>s乙2 | ||
C. | x甲>x乙,s甲2<s乙2 | D. | x甲<x乙,s甲2>s乙2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com