2.過點(diǎn)(1,0)且與直線x-2y-2=0垂直的直線方程是2x+y-2=0.

分析 設(shè)與直線x-2y-2=0垂直的直線方程是2x+y+m=0,把點(diǎn)(1,0)代入解出即可得出.

解答 解:設(shè)與直線x-2y-2=0垂直的直線方程是2x+y+m=0,
把點(diǎn)(1,0)代入可得:2+0+m=0,解得m=-2.
∴要求的直線方程為:2x+y-2=0.
故答案為:2x+y-2=0.

點(diǎn)評 本題考查了相互垂直的直線的斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.圓$\left\{\begin{array}{l}x=-3+2cosθ\\ y=4+2sinθ\end{array}$與$\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}$的圓心距d與曲線$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$($\frac{π}{3}$≤θ≤π)的長度p的大小關(guān)系是( 。
A.d>pB.d<pC.d=pD.無法比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,A、B是離心率為$\frac{{\sqrt{3}}}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個(gè)頂點(diǎn),且AB=$\sqrt{5}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l平行于AB,與x,y軸分別交于點(diǎn)M,N,與橢圓相交于點(diǎn)C,D.證明:△OCM的面積等于△ODN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x3-3ax2+3x有極小值,則a的取值范圍是( 。
A.a>1B.a≥1C.a≥1或a≤-1D.a>1或a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,-4≤x≤2}\\{2x,x>2}\end{array}\right.$,若f(x0)=6,則x0=-$\sqrt{10}$,或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)x=m和x=n是函數(shù)f(x)=2lnx+$\frac{1}{2}$x2-(a+1)x的兩個(gè)極值點(diǎn),其中m<n,a>0.
(Ⅰ)若a=2時(shí),求m,n的值;
(Ⅱ)求f(m)+f(n)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若AB為過橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的中心的弦,F(xiàn)1為橢圓的左焦點(diǎn),則△F1AB面積的最大值12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)f(θ)=$\frac{{2{{cos}^3}θ+{{sin}^2}(2π-θ)+sin(\frac{π}{2}+θ)-3}}{{2+2{{cos}^2}(π+θ)+cos(-θ)}}$.
(1)化簡 f(θ)
(2)求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)3人坐在有八個(gè)座位的一排上,若每人的左右兩邊都要有空位,則不同坐法的種數(shù)為多少?
(2)有5個(gè)人并排站成一排,如果甲必須在乙的右邊,則不同的排法有多少種?

查看答案和解析>>

同步練習(xí)冊答案