16.若x,y滿足$\left\{\begin{array}{l}x≥0\\ x+2y-3≥0\\ 2x+y-3≤0\end{array}\right.$,則u=2x+y的最大值為( 。
A.3B.$\frac{5}{2}$C.2D.$\frac{3}{2}$

分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求z的取值范圍.

解答 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分)
由u=2x+y得y=-2x+u,
平移直線y=-2x+u,
由圖象可知當直線y=-2x+u與BC平行時,線段BC上的任意一點都能使y=-2x+u取得最大值,
由$\left\{\begin{array}{l}{x=0}\\{2x+y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$,即C(0,3),
代入目標函數(shù)u=2x+y得z=0+3=3.
故選:A

點評 本題主要考查線性規(guī)劃的應用,結(jié)合目標函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.某國際物流有限公司所屬危險品倉庫發(fā)生特大爆炸,某地區(qū)選出600名消防官兵參與災區(qū)救援,設其編號為001,002,…,600,為打通生命通道,先采用系統(tǒng)抽樣方法抽出50名為先遣部隊,且隨機抽得的一個號碼為003,這600名官兵來源于不同的縣市,從001到300來自A市,從301到495來自B市,從496到600來自C市,則三個市被抽中的人數(shù)依次為(  )
A.26,16,8B.25,17,8C.25,16,9D.24,17,9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知等差數(shù)列{an}的公差d<0,a2+a6=10,a2a6=21.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=2${\;}^{{a}_{n}}$,記數(shù)列{bn}前n項的乘積為Tn,求Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x-1},x≥2}\\{lo{g}_{2}({2}^{x}+1),0≤x<2}\end{array}\right.$,則f(f(1))=2,f(x)最小值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等比數(shù)列{an}的前n項和為Sn,an>0,a1=$\frac{2}{3}$,且-$\frac{3}{{a}_{2}}$,$\frac{1}{{a}_{3}}$,$\frac{1}{{a}_{4}}$,成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an}滿足bn•log3(1-Sn+1)=1,求滿足方程b1b2+b2b3+…+bnbn+1=$\frac{504}{1009}$的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.點M(x,y)是不等式組$\left\{{\begin{array}{l}{0≤x≤\sqrt{3}}\\{y≤3}\\{x≤\sqrt{3}y}\end{array}}\right.$表示的平面區(qū)域Ω內(nèi)的一動點,則2x-y+1的最大值是$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)是定義在R上的奇函數(shù),滿足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,若數(shù)列{an}的前n項和Sn滿足$\frac{S_n}{n}=\frac{{2{a_n}}}{n}+1$,則f(a5)+f(a6)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y≤3}\\{\;}\end{array}\right.$,則變量z=x+y的取值范圍為[2,8].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知tanα=2,求下列各式的值:
(1)cos2α;
(2)sinαcosα;
(3)sin2α-cos2α;
(4)$\frac{sinα+cosα}{sinα-cosα}$.

查看答案和解析>>

同步練習冊答案