A. | 26,16,8 | B. | 25,17,8 | C. | 25,16,9 | D. | 24,17,9 |
分析 根據(jù)系統(tǒng)抽樣的定義求出號(hào)碼間隔即可得到結(jié)論.
解答 解:號(hào)碼間隔為600÷50=12,
則隨機(jī)抽的號(hào)碼為003,
則構(gòu)成一個(gè)等差數(shù)列,通項(xiàng)公式為3+12(n-1)=12n-9,
由1≤12n-9≤300,即1≤n≤25,共有25人,
由301≤12n-9≤495,即26≤n≤42,共有17人,
由496≤12n-9≤600,即43≤n≤50,共有8人,
故三個(gè)市被抽中的人數(shù)依次為25,17,8,
故選:B.
點(diǎn)評 本題主要考查系統(tǒng)抽樣的應(yīng)用,求出樣本間隔,利用等差數(shù)列進(jìn)行求解是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:1:2 | B. | 1:1:3 | C. | 1:1:4 | D. | 1:1:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “若x≠a且x≠b,則x2-(a+b)x+ab≠0”的否命題為:“若x=a且x=b,則x2-(a+b)x+ab=0” | |
B. | “x=-1”是“x2-5x-6=0”的根的逆命題是真命題 | |
C. | 命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
D. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P∩Q?Q | B. | P∩Q?P | C. | P∩Q=P | D. | P∪Q=Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | 2 | C. | $\frac{3}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{2}{3}$π,π) | B. | ($\frac{π}{2}$,$\frac{5}{6}$π] | C. | [0,$\frac{π}{2}$)∪[$\frac{5}{6}$π,π) | D. | [0,$\frac{π}{2}$)∪[$\frac{2}{3}$π,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{1}{{2{e^2}}},+∞})$ | B. | $({-1,\frac{1}{{2{e^2}}}}]$ | C. | $[{-\frac{1}{{2{e^2}}},1})$ | D. | $({-∞,-\frac{1}{{2{e^2}}}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com