7.已知等差數(shù)列{an}的公差d<0,a2+a6=10,a2a6=21.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2${\;}^{{a}_{n}}$,記數(shù)列{bn}前n項(xiàng)的乘積為Tn,求Tn的最大值.

分析 (Ⅰ)由已知列式求得首項(xiàng)和公差,則數(shù)列{an}的通項(xiàng)公式可求;
(Ⅱ)求出等差數(shù)列的前n項(xiàng)和,利用配方法求得前n項(xiàng)和的最大值,則Tn的最大值可求.

解答 解:(Ⅰ)由題意可得,$\left\{\begin{array}{l}{({a}_{1}+d)+({a}_{1}+5d)=10}\\{({a}_{1}+d)({a}_{1}+5d)=21}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{{a}_{1}=8}\\{d=-1}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$(舍).
∴an=a1+(n-1)d=9-n;
(Ⅱ)${T}_{n}=_{1}_{2}…_{n}={2}^{{a}_{1}+{a}_{2}+…+{a}_{n}}={2}^{{S}_{n}}$,
由(Ⅰ)得,${S}_{n}=n{a}_{1}+\frac{n(n-1)d}{2}=-\frac{{n}^{2}}{2}+\frac{17n}{2}$=$-\frac{1}{2}(n-\frac{17}{2})^{2}+\frac{289}{8}$,
∴當(dāng)n=8或n=9時(shí),Sn取到最大值36.
∴Tn的最大值為236

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列有關(guān)命題的說法正確的是(  )
A.“若x≠a且x≠b,則x2-(a+b)x+ab≠0”的否命題為:“若x=a且x=b,則x2-(a+b)x+ab=0”
B.“x=-1”是“x2-5x-6=0”的根的逆命題是真命題
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)點(diǎn)P是曲線C:y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一點(diǎn),曲線C在P點(diǎn)處的切線的傾斜角為α,則角α的取值范圍是( 。
A.[$\frac{2}{3}$π,π)B.($\frac{π}{2}$,$\frac{5}{6}$π]C.[0,$\frac{π}{2}$)∪[$\frac{5}{6}$π,π)D.[0,$\frac{π}{2}$)∪[$\frac{2}{3}$π,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))處的切線方程l:y=g(x),若函數(shù)f(x)滿足?x∈l(其中I為函數(shù)f(x)的定義域),當(dāng)x≠x0時(shí),[f(x)-g(x)](x-x0)>0恒成立,則稱x0為函數(shù)f(x)的“轉(zhuǎn)折點(diǎn)”,若函數(shù)f(x)=lnx-ax2-x在(0,e]上存在一個(gè)“轉(zhuǎn)折點(diǎn)”,則a的取值范圍為( 。
A.$[{\frac{1}{{2{e^2}}},+∞})$B.$({-1,\frac{1}{{2{e^2}}}}]$C.$[{-\frac{1}{{2{e^2}}},1})$D.$({-∞,-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合A={x|x2≤4x},集合B={-1,2,-3,4},則A∩B=(  )
A.{-1,2}B.{2,4}C.{-3,-1}D.{-1,2,-3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}滿足a1=1,并且a2n=2an,a2n+1=an+1(n∈N*),則a5=3,a2016=192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=x+\frac{a}{x}+b(x≠0)$,其中a,b∈R.若對(duì)于任意的$a∈[{\frac{1}{2},2}]$,不等式f(x)≤10在$x∈[{\frac{1}{4},\sqrt{3}}]$上恒成立,則b的取值范圍是( 。
A.$({-∞,\frac{7}{4}}]$B.$({-∞,10-\frac{5}{3}\sqrt{3}}]$C.$({-∞,\frac{31}{4}}]$D.$({-∞,10-\frac{7}{6}\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若x,y滿足$\left\{\begin{array}{l}x≥0\\ x+2y-3≥0\\ 2x+y-3≤0\end{array}\right.$,則u=2x+y的最大值為( 。
A.3B.$\frac{5}{2}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在數(shù)列{an}中,其前n項(xiàng)和為Sn,S1=1,S2=2,若Sn+2=2Sn+1-Sn+2,數(shù)列bn=an•2n,數(shù)列{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn

查看答案和解析>>

同步練習(xí)冊答案