5.已知a,b是兩條直線,α是一個(gè)平面,則下列判斷正確的是( 。
A.a⊥α,b⊥α,則a⊥bB.a∥α,b?α,則a∥b
C.a⊥b,b?α,則a⊥αD.a∥α,b?α,a?α,則a∥α

分析 利用線面關(guān)系的性質(zhì)定理和判定定理對(duì)選項(xiàng)分別分析選擇.

解答 解:對(duì)于A,由a⊥α,b⊥α,則a∥b,故A錯(cuò)誤;
對(duì)于B,a∥α,b?α,則a∥b或者a,b異面;故B 錯(cuò)誤;
對(duì)于C,a⊥b,b?α,則a與α位置關(guān)系不確定;故C錯(cuò)誤;
對(duì)于D,滿足線面平行的判定定理;故D 正確.
故選:D.

點(diǎn)評(píng) 本題考查了空間線面關(guān)系的判定以及空間想象能力的培養(yǎng);屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,且a2=3,S4=16,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{2}{{a}_{n}•{a}_{n+1}}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算:
(1)$(\frac{64}{27})^{\frac{1}{3}}$+(2$\frac{7}{9}$)0.5-($\root{3}{\frac{8}{27}}$+0.027${\;}^{-\frac{1}{3}}$)${\;}^{\frac{1}{2}}$
(2)log3$\sqrt{27}$-log3$\sqrt{3}$-lg25-lg4+ln(e2)+2${\;}^{\frac{1}{2}lo{g}_{2}4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知直線2x+my-1=0與直線3x-2y+n=0垂直,垂足為(2,p),則p-m-n的值為( 。
A.-6B.6C.4D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.△ABC中,已知點(diǎn)A(2,1),B(-2,3),C(0,1),則BC邊上的中線所在直線的一般式方程為x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y最大值是最小值的2倍,則a的值是( 。
A.2B.$\frac{3}{2}$C.$\frac{1}{11}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中正確的個(gè)數(shù)為( 。
①線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;
②殘差平方和越小的模型,模型擬合的效果越好;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若f(x)=ex-kx的極小值為0,則k=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知m為非零常數(shù),對(duì)x∈R,有f(x+m)=$\frac{1+f(x)}{1-f(x)}$恒成立,則函數(shù)f(x)的最小正周期是4m.

查看答案和解析>>

同步練習(xí)冊(cè)答案