17.下列命題中正確的個數(shù)為(  )
①線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;
②殘差平方和越小的模型,模型擬合的效果越好;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好.
A.1B.2C.3D.0

分析 根據(jù)“殘差”的意義、線性相關(guān)系數(shù)和相關(guān)指數(shù)的意義,即可作出正確的判斷.

解答 解:根據(jù)線性相關(guān)系數(shù)r的絕對值越接近1,兩個變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱,判斷①錯誤;
根據(jù)比較兩個模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果就越好,判斷②正確;
根據(jù)用相關(guān)指數(shù)R2刻畫回歸的效果時(shí),R2的值越大說明模型的擬合效果就越好,判斷③錯誤;
綜上,正確的命題是②.
故選:A.

點(diǎn)評 本題考查了“殘差”與線性相關(guān)系數(shù)、相關(guān)指數(shù)的意義與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在拋物線y2=2px(p>0)中有如下結(jié)論:過焦點(diǎn)F的動直線l交拋物線y2=2px(p>0)于A、B兩點(diǎn),則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=f(x)為定值,請把此結(jié)論類比到橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中有:過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦點(diǎn)F的直線交橢圓于A,B則$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{2a}{b^2}$為定值;當(dāng)橢圓方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1時(shí),$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a,b,c為非零常數(shù),則下列命題正確的是( 。
A.若a<b,則a2<b2B.若a<b,則ac<bcC.若a>b,則ac2>bc2D.若a>b,則$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a,b是兩條直線,α是一個平面,則下列判斷正確的是( 。
A.a⊥α,b⊥α,則a⊥bB.a∥α,b?α,則a∥b
C.a⊥b,b?α,則a⊥αD.a∥α,b?α,a?α,則a∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,AB∥CD,∠DCB=90°,AB=AD=AA1=2DC,Q為棱CC1上一動點(diǎn),過直線AQ的平面分別與棱BB1,DD1交于點(diǎn)P,R,則下列結(jié)論錯誤的是( 。
A.對于任意的點(diǎn)Q,都有AP∥QR
B.對于任意的點(diǎn)Q,四邊形APQR不可能為平行四邊形
C.存在點(diǎn)Q,使得△ARP為等腰直角三角形
D.存在點(diǎn)Q,使得直線BC∥平面APQR

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點(diǎn)(2,1)且與直線x+3y+4=0垂直的直線方程為3x-y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)為二次函數(shù),且滿足f(2)=1,f(x)在(0,+∞)上的兩個零點(diǎn)為1和3.
(1)求函數(shù)f(x)在R上的解析式;
(2)若x∈(-∞,m),函數(shù)f(x)的圖象恒在y=-3的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證:PA∥平面BDE;
(2)求證:PB⊥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.雙曲線y=$\frac{k}{x}$經(jīng)過P1,P2兩點(diǎn),△AOP1為等腰直角三角形,AP2⊥x軸且AP2=1,求k的值.

查看答案和解析>>

同步練習(xí)冊答案