2.sin523°sin943°+sin1333°sin313°=$\frac{1}{2}$.

分析 利用誘導(dǎo)公式,兩角和的余弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡(jiǎn)求值.

解答 解:sin523°sin943°+sin1333°sin313°
=sin163°sin223°+sin253°sin(-47°)
=-sin17°sin43°+cos17°cos43°
=cos(43°+17°)
=cos60°
=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,兩角和的余弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=e-5x+2的導(dǎo)數(shù)是-5e-5x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等差數(shù)列{an}中,a2=1,a3+a5=4,則該數(shù)列公差為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某工廠生產(chǎn)A,B,C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,若樣本中A種型號(hào)產(chǎn)品有12件,那么樣本的容量n=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中以原點(diǎn)O為極點(diǎn)以x軸為正半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0.
(Ⅰ)求曲線C的普通方程;
(Ⅱ)設(shè)點(diǎn)P(x,y)是曲線C上任意一點(diǎn),求xy的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(2019)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的首項(xiàng)為2,前n項(xiàng)和為Sn,且$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$(n∈N*).
(1)求a2的值;
(2)設(shè)bn=$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$,求數(shù)列{bn}的通項(xiàng)公式;
(3)若am,ap,ar(m,p,r∈N*,m<p<r)成等比數(shù)列,試比較p2與mr的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)全集U={1,2,3,4,5},A={x|x2-5x+q=0},則∁UA={1,2,3,4,5},或{2,3,5},或{1,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{2}{x^2}$-(a+1)x+1+lnx(a>0),若存在唯一一個(gè)整數(shù)x0使f(x0)<0成立,則a的范圍是( 。
A.(0,1)B.(0,1]C.(0,2+2ln2)D.($\frac{1}{2}$,$\frac{1}{2}$+$\frac{1}{2}$ln2)

查看答案和解析>>

同步練習(xí)冊(cè)答案