10.已知α,β是空間中兩個不同的平面,m為平面β內(nèi)的一條直線,則“α⊥β”是“m⊥α”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用充分條件和必要條件的定義進(jìn)行判斷.

解答 解:由平面與平面垂直的判定定理知如果m為平面β內(nèi)的一條直線,且m⊥α,則α⊥β,反之,α⊥β時,若m平行于α和β的交線,則m∥α,所以不一定能得到m⊥α,
所以“α⊥β”是“m⊥α”的必要不充分條件.
故選B.

點評 本題考查線面垂直、面面垂直問題以及充要條件問題,屬基本題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知O是銳角△ABC的外心,B=30°,若$\frac{cosA}{sinC}$$\overrightarrow{BA}$+$\frac{cosC}{sinA}$$\overrightarrow{BC}$=λ$\overrightarrow{BO}$,則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,三棱錐O-ABC的三條棱OA,OB,OC兩兩垂直且OA=OB=OC=$\sqrt{2}$,△ABC為
等邊三角形,M為△ABC內(nèi)部一點,點P在OM的延長線上,且OM=$\frac{1}{3}$MP,PA=PB.
(1)證明:AB⊥平面POC;
(2)求三棱錐A-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}\right.$,則z=x+y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥BC,AD⊥CD,PA=AD,△BCD是邊長為$\sqrt{3}$的正三角形,AC與BD交于點O,點M是PB的中點.
(1)求證:OM∥平面PAD;
(2)求三棱錐M-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知紙片Rt△ABC中,AB=AC=1,過頂點A翻折紙片,得到折痕AD,將翻折后的紙片豎起放置在桌面上(BD,DC與桌面接觸)使AD垂直于桌面,且二面角B-AD-C為直二面角.
(1)求VD-ABC;
(2)求四面體D-ABC的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,AB是半圓O的直徑,C是半圓O上除了A、B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=BE,AB=4,tan∠EAB=$\frac{1}{4}$
(1)證明:平面ADE⊥平面ACD
(2)當(dāng)AC=BC時,求二面角D-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個四棱錐的三視圖如圖所示,則該四棱錐的體積為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點P在△ABC內(nèi)(不含邊界),且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則$\frac{y+1}{x+2}$的取值范圍為( 。
A.($\frac{1}{3}$,1)B.($\frac{1}{2}$,1)C.($\frac{2}{3}$,1)D.($\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

同步練習(xí)冊答案