【題目】在棱長為a的正方體ABCD﹣A1B1C1D1中,E、F分別是AB、BC的中點,EF與BD交于點G,M為棱BB1上一點.
(1)證明:EF∥平面 A1C1D;
(2)當B1M:MB的值為多少時,D1M⊥平面 EFB1 , 證明之;
(3)求點D到平面 EFB1的距離.

【答案】
(1)解:∵E、F分別是AB、BC的中點,∴EF∥AC,又AC∥A1C1

∴EF∥A1C1,而AC平面 A1C1D,EF平面 A1C1D,∴EF∥平面AC1D1


(2)解:當B1M:MB=1時,D1M⊥平面EFB1,證明如下:

∵B1M:MB=1,∴A1M⊥B1E.

又A1D1⊥平面AA1BB1,∴A1D1⊥B1E,∴B1E⊥平面A1MD,∴B1E⊥D1M ①.

又EF⊥平面DD1B1B,∴EF⊥D1M ②,又EF∩B1E=E ③,

∴由①②③可得D1M⊥平面EFB1


(3)解:設點D到平面EFB1的距離d,∵ ,

,即 EFB1G )= a( EFDG),即dB1G=aDG,

∴d= a=a


【解析】(1)根據EF∥AC、AC∥A1C1 證得EF∥A1C1 , 再利用直線和平面平行的判定定理證得平面 EF∥A1C1D.(2)當B1M:MB的值為1時,D1M⊥平面 EFB1 . 先證明B1E⊥D1M,再證明EF⊥D1M,再結合EF∩B1E=E,從而證得D1M⊥平面 EFB1 . (3)設點D到平面 EFB1的距離為d,根據 ,求得d的值.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知2(tanA+tanB)=
(1)證明:a、c、b成等差數(shù)列;
(2)求cosC的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).
(1)求以線段AB、AC為鄰邊的平行四邊形兩條對角線的長;
(2)設實數(shù)t滿足( =0,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖面積為4的矩形ABCD中有一個陰影部分,若往矩形ABCD投擲1000個點,落在矩形ABCD的非陰影部分中的點數(shù)為400個,試估計陰影部分的面積為(

A.2.2
B.2.4
C.2.6
D.2.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的個數(shù)為(
①一個命題的逆命題為真,它的否命題也一定為真;
②若一個命題的否命題為假,則它本身一定為真;
的充要條件;
與a=b是等價的;
⑤“x≠3”是“|x|≠3”成立的充分條件.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知面垂直于圓柱底面, 為底面直徑, 是底面圓周上異于的一點, . 求證:

(1)

(2)求幾何體的最大體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.

(1)求證:平面AEC⊥平面ABE;
(2)點F在BE上.若DE∥平面ACF,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為2,線段D1B1上有兩個動點E、F,且EF=1,則下列結論中錯誤的是(

A.AC⊥BE
B.AA1∥平面BEF
C.三棱錐A﹣BEF的體積為定值
D.△AEF的面積和△BEF的面積相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據《中華人民共和國道路交通安全法》規(guī)定:“車輛駕駛員血液酒精溶度(單位mg/100ml)/在,屬于酒后駕駛;血液濃度不低于80,屬于醉酒駕駛。”2017年“中秋節(jié)”晚9點開始,濟南市交警隊在桿石橋交通崗前設點,對過往的車輛進行檢查,經過4個小時,共查處喝過酒的駕駛者60名,下圖是用酒精測試儀對這60名駕駛者血液中酒精溶度進行檢測后所得結果畫出的頻率分布直方圖。

(1)求這60名駕駛者中屬于醉酒駕車的人數(shù)(圖中每組包括左端點,不包括右端點)

(2)若以各小組的中值為該組的估計值,頻率為概率的估計值,求這60名駕駛者血液的酒精濃度的平均值。

查看答案和解析>>

同步練習冊答案