計(jì)算:
1-sinα
1+cosα
+
1-cosα
=
 
考點(diǎn):三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:由倍角公式可去根號,從而化簡.
解答: 解:∵1+cosα=2cos2
α
2
,1-cosα=2sin2
α
2
,1-sinα=sin2
α
2
-2sin
α
2
cos
α
2
+cos2
α
2
=(sin
α
2
-cos
α
2
2,
1+cosα
=
2
|cos
α
2
|,
1-cosα
=
2
|sin
α
2
|,
∴原式=
(sin
α
2
-cos
α
2
)
2
2
(|sin
α
2
|+|cos
α
2
|)
點(diǎn)評:本題主要考察了倍角公式的應(yīng)用,屬于基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+2|-2|x-1|
(1)解不等式f(x)≥-2;
(2)對任意x∈[a,+∞),都有f(x)≤x-a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在坐標(biāo)軸上的雙曲線E過點(diǎn)P(-3
2
,4),它的漸近線方程為y=±
4
3
x
,
(1)求雙曲線E的標(biāo)準(zhǔn)方程;
(2)若直線y=x+1與E交于A,B兩點(diǎn),求|AB|.(要求結(jié)果化到最簡)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)的和為Sn,且對任意正整數(shù)n,都有a2a8=2a3a6,S5=-62,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)3+i,-4-2i,-5i,6,
5
2
-3i.在復(fù)平面內(nèi)畫出這些復(fù)數(shù)與它們的共軛復(fù)數(shù)所對應(yīng)的向量,并求出它們的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在實(shí)數(shù)a,使得函數(shù)y=sin2x+acosx-1+
5
8
a在閉區(qū)間[0,
π
2
]上最大值為1?若存在,求出對應(yīng)的a值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等比數(shù)列,a1=C
 
3m
2m+3
•A
 
1
m-2
,公比q是(x+
1
4x2
4的展開式中的第二項(xiàng)
(1)用n、x表示通項(xiàng)an與前n項(xiàng)和Sn
(2)當(dāng)x=1時(shí),求An=C
 
1
n
S1+C
 
2
n
S2+…+C
 
n
n
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線交于點(diǎn)M,設(shè)E為BM的中點(diǎn),F(xiàn)為BC上的點(diǎn)且BF=
1
2
FC.
(1)證明:A,E,F(xiàn)三點(diǎn)共線;
(2)若AB=2,AD=1,且∠DAB=60°,求:①AE的長度;②求∠CAE的余弦值;③向量AE在向量AC上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=|
b
|=2,且
a
+
b
a
的夾角與
a
-
b
a
的夾角相等,求
a
b
的夾角.

查看答案和解析>>

同步練習(xí)冊答案