17.設(shè)向量$\overrightarrow{a}$和$\overrightarrow$均為單位向量,且($\overrightarrow{a}$+$\overrightarrow$)2=1,則$\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{2π}{3}$.

分析 直接展開($\overrightarrow{a}$+$\overrightarrow$)2=1,得到$\overrightarrow{a}$•$\overrightarrow$=$-\frac{1}{2}$,再由數(shù)量積公式求得$\overrightarrow{a}$與$\overrightarrow$夾角.

解答 解:設(shè)$\overrightarrow{a}$和$\overrightarrow$的夾角為θ,
∵($\overrightarrow{a}$+$\overrightarrow$)2=1,且$\overrightarrow{a}$和$\overrightarrow$是單位向量,
∴$\overrightarrow{a}$•$\overrightarrow$=$-\frac{1}{2}$,則$|\overrightarrow{a}||\overrightarrow|cosθ=-\frac{1}{2}$,即cos$θ=-\frac{1}{2}$,
又∵θ∈[0,π],∴θ=$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查由數(shù)量積求向量的夾角,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$\frac{1}{cosα}$和tanα是方程x2+3x+m=0的兩根,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知i是虛數(shù)單位,a,b∈R,a+bi=$\frac{3-i}{1+i}$,則a+b等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$y={log_a}({x^2}-ax+\frac{1}{2})$,對(duì)任意的x1,x2∈[1,+∞),且x1≠x2時(shí),滿足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則實(shí)數(shù)a的取值范圍是(  )
A.$(1,\frac{3}{2})$B.$({\frac{3}{2},+∞}]$C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sinα-sinβ=-$\frac{1}{3}$,cosα-cosβ=$\frac{1}{2}$,求cos(α-β)和sin(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度v(單位:千克/年)是養(yǎng)殖密度x (單位:尾/立方米)的函數(shù).當(dāng)x不超過4尾/立方米時(shí),v的值為2千克/年;當(dāng)4<x≤20時(shí),v是x的一次函數(shù),當(dāng)x達(dá)到20尾/立方米時(shí),因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時(shí),求v關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有5名學(xué)生、2名老師站成一行照相,2名老師不能相鄰的排法有( 。
A.${A}_{5}^{2}$${A}_{2}^{2}$B.${A}_{7}^{7}$-${A}_{2}^{2}$${A}_{6}^{6}$
C.${A}_{7}^{7}$-${A}_{6}^{6}$D.${C}_{10}^{8}$0.820.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow$=$(\frac{{\sqrt{3}}}{2}sinx,\frac{1}{2}cos2x)$,x∈R,設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在$[{0,\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.長(zhǎng)方體長(zhǎng)、寬、高之比為2:3:4,全面積為208,長(zhǎng)方體的體積為192.

查看答案和解析>>

同步練習(xí)冊(cè)答案