12.函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象( 。
A.關(guān)于直線x=$\frac{π}{12}$對(duì)稱B.關(guān)于直線x=$\frac{5π}{12}$對(duì)稱
C.關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱D.關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱

分析 由條件利用正弦函數(shù)的圖象的對(duì)稱性,可得函數(shù)y=sin(2x-$\frac{π}{6}$)圖象的一個(gè)對(duì)稱中心.

解答 解:對(duì)于函數(shù)y=sin(2x-$\frac{π}{6}$),令2x-$\frac{π}{6}$=kπ,k∈Z,可得x=$\frac{1}{2}$kπ+$\frac{π}{12}$,
故令k=0,可得函數(shù)y=sin(2x-$\frac{π}{6}$)圖象的一個(gè)對(duì)稱中心是($\frac{π}{12}$,0),
故選:C.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知拋物線C:y2=4x,為其準(zhǔn)線,過(guò)其對(duì)稱軸上一點(diǎn)P(2,0)作直線l′與拋物線交于A(x1,y1)、B(x2,y2)兩點(diǎn),連結(jié)OA、OB并延長(zhǎng)AO、BO分別交l于點(diǎn)M、N.
(1)求$\overrightarrow{OM}•\overrightarrow{ON}$的值;
(2)記點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn),設(shè)P分有向線段$\overrightarrow{AB}$所成的比為λ,
且$\overrightarrow{PQ}$⊥($\overrightarrow{QA}$+μ$\overrightarrow{QB}$),求λ+μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線y2=4x,焦點(diǎn)為F,過(guò)點(diǎn)(2,0)且斜率為正數(shù)的直線交拋物線于A,B兩點(diǎn),且$\overrightarrow{FA}$•$\overrightarrow{FB}$=-11.
(Ⅰ)求直線AB的方程;
(Ⅱ)設(shè)點(diǎn)C是拋物線上$\widehat{AB}$(不含A、B兩點(diǎn))上的動(dòng)點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,M為SD的中點(diǎn),AN⊥SC,且交SC于點(diǎn)N.   
(Ⅰ)求證:SB∥平面ACN;
(Ⅱ)求證:SC⊥平面AMN;
(Ⅲ)求AC與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.正三棱錐O-ABC的每一條棱長(zhǎng)均為1,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(0≤x,y,z≤1),且滿足1≤x+y+z≤2,則動(dòng)點(diǎn)P的軌跡所圍成的區(qū)域的體積是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某市共有2500個(gè)行政村,根據(jù)經(jīng)濟(jì)的狀況分為貧困村1000個(gè),脫貧村900個(gè),小康村600個(gè),為了解各村的路況,采用分層抽樣的方法,若從本市中抽取100個(gè)村,則從貧困村和小康村抽取的樣本數(shù)分別為(  )
A.40、24B.40、36C.24、36D.24、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知p:“a≤t+$\frac{16}{t}$對(duì)t∈(0,+∞)恒成立”,q:“直線x-2y+a=0與直線x-2y+3=0的距離大于$\sqrt{5}$”,則¬p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知O是△ABC內(nèi)一點(diǎn),$\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$=$\overrightarrow 0$,則△AOB的面積與△ABC的面積之比為( 。
A.1:4B.2:3C.1:3D.1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,c=2,acosC=csinA,若當(dāng)a=x0時(shí)的△ABC有兩解,則x0的取值范圍是( 。
A.(1,2)B.(1,$\sqrt{3}$)C.($\sqrt{2}$,2$\sqrt{2}$)D.(2,2$\sqrt{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案