12.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線方程為y=$\frac{\sqrt{7}}{3}$x,它的一個(gè)頂點(diǎn)到較近焦點(diǎn)的距離為1,則雙曲線方程為(  )
A.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

分析 求出雙曲線的漸近線方程,可得$\frac{a}$=$\frac{\sqrt{7}}{3}$,再由最小值c-a=1,結(jié)合a,b,c的距離,解得a,b,即可得到所求雙曲線的方程.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
由題意可得$\frac{a}$=$\frac{\sqrt{7}}{3}$,
由它的一個(gè)頂點(diǎn)到較近焦點(diǎn)的距離為1,可得c-a=1,
又c2=a2+b2
解得a=3,b=$\sqrt{7}$,c=4.
可得雙曲線的方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的方程的求法,注意運(yùn)用雙曲線的漸近線方程和雙曲線的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下面給出四個(gè)隨機(jī)變量:
①一高速公路上某收費(fèi)站在1小時(shí)內(nèi)經(jīng)過(guò)的車(chē)輛數(shù)ξ;
②一個(gè)沿直線y=x進(jìn)行隨機(jī)運(yùn)動(dòng)的質(zhì)點(diǎn),它在該直線上的位置η;
③某城市在1天內(nèi)發(fā)生的火警次數(shù);
④1天內(nèi)的溫度η.
其中是離散型隨機(jī)變量的是( 。
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的一條漸近線經(jīng)過(guò)點(diǎn)P(1,-2),則該雙曲線的離心率為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),F(xiàn)是右焦點(diǎn),過(guò)F作雙曲線C在第一、第三象限漸近線的垂線l,若l與雙曲線的左右兩支都相交,則雙曲線的離心率e的取值范圍是(  )
A.($\sqrt{2}$,+∞)B.($\sqrt{3}$,+∞)C.(2,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=1+ax-alnx,a≠0.
(1)求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象過(guò)點(diǎn)(1,0),是否存在實(shí)數(shù)b,使得對(duì)任意的實(shí)數(shù)c∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+b]在區(qū)間(c,3)上不單調(diào)(f′(x)是f(x)的導(dǎo)函數(shù))?若存在,求b的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)ai=$\frac{lni}{i}$(i∈N*),求證:a2•a3…an<$\frac{1}{n}$(n≥2且n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖所示,A,B,C是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上的三個(gè)點(diǎn),AB經(jīng)過(guò)坐標(biāo)原點(diǎn)O,AC經(jīng)過(guò)雙曲線的右焦點(diǎn)F,若BF⊥AC,且|$\overrightarrow{AF}$|=a,則該雙曲線的離心率是( 。
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知l是雙曲線C:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的一條漸近線,P是l上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則P到x軸的距離為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若正四棱錐的側(cè)棱長(zhǎng)為$\sqrt{3}$,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.對(duì)于兩個(gè)實(shí)數(shù)a,b,min{a,b}表示a,b中的較小數(shù).設(shè)f (x)=min{x,$\frac{1}{x}$}(x>0),則不等式f (x)≥log42的解集是[$\frac{1}{2}$,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案