分析 (Ⅰ)由已知條件利用概率加法公式和相互獨(dú)立事件概率乘法公式列出方程組,能求出該同學(xué)通過選拔進(jìn)入“體育隊(duì)”的概率p1和進(jìn)入“文藝隊(duì)”的概率p2.
(Ⅱ)依題意隨機(jī)變量X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
解答 解:(Ⅰ)∵某同學(xué)通過選拔考試進(jìn)入學(xué)校的“體育隊(duì)”和“文藝隊(duì)”,
進(jìn)入這兩個(gè)隊(duì)成功與否是相互獨(dú)立的,能同時(shí)進(jìn)入這兩個(gè)隊(duì)的概率是$\frac{1}{24}$,至少能進(jìn)入一個(gè)隊(duì)的概率是$\frac{3}{8}$,
并且能進(jìn)入“體育隊(duì)”的概率小于能進(jìn)入“文藝隊(duì)”的概率.
該同學(xué)通過選拔進(jìn)入“體育隊(duì)”的概率p1和進(jìn)入“文藝隊(duì)”的概率p2,
∴$\left\{\begin{array}{l}{{p}_{1}{p}_{2}=\frac{1}{24}}\\{{p}_{1}+{p}_{2}-{p}_{1}{p}_{2}=\frac{3}{8}}\\{{p}_{1}<{p}_{2}}\end{array}\right.$,
解得${p}_{1}=\frac{1}{6},{p}_{2}=\frac{1}{4}$.
(Ⅱ)依題意隨機(jī)變量X的可能取值為0,1,2,3,
P(X=0)=(1-$\frac{1}{6}$)(1-$\frac{1}{4}$)=$\frac{5}{8}$,
P(X=1)=(1-$\frac{1}{6}$)×$\frac{1}{4}$=$\frac{5}{24}$,
P(X=2)=$\frac{1}{6}×(1-\frac{1}{4})$=$\frac{1}{8}$,
P(X=3)=$\frac{1}{6}×\frac{1}{4}$=$\frac{1}{24}$,
∴X的分布列:
X | 0 | 1 | 2 | 3 |
P | $\frac{5}{8}$ | $\frac{5}{24}$ | $\frac{1}{8}$ | $\frac{1}{24}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意概率加法公式和相互獨(dú)立事件概率乘法公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,5] | B. | (-∞,2]∪[5,+∞) | C. | (-∞,3]∪[5,+∞) | D. | [3,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)是周期函數(shù) | B. | f(x)-2=f(x+1) | C. | f(x+2)-1=f(x) | D. | f(x)-1=f(x+2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com