【題目】設(shè)有以下四個(gè)命題:
①底面是平行四邊形的四棱柱是平行六面體;
②底面是矩形的平行六面體是長(zhǎng)方體;
③直四棱柱是直平行六面體;
④棱臺(tái)的相對(duì)側(cè)棱延長(zhǎng)后必交于一點(diǎn).
其中正確命題的序號(hào)是______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為5的正方形與矩形所在平面互相垂直,分別為的中點(diǎn),.
(1)求證:平面;
(2)求證:平面;
(3)在線段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某工廠開(kāi)展群眾體育活動(dòng)的情況,擬采用分層抽樣的方法從A,B,C三個(gè)區(qū)中抽取7個(gè)工廠進(jìn)行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個(gè)工廠
(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個(gè)數(shù);
(Ⅱ)若從抽取的7個(gè)工廠中隨機(jī)抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這2個(gè)工廠中至少有1個(gè)來(lái)自A區(qū)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于不同的兩點(diǎn),.
(1)寫出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(2)若弦長(zhǎng),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號(hào) | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)求曲線上任意一點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù):①,②,③,判斷如下三個(gè)命題的真假:
命題甲: 是偶函數(shù);
命題乙: 在上是減函數(shù),在上是增函數(shù);
命題丙: 在是增函數(shù).
則能使命題甲、乙、丙均為真的所有函數(shù)的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)滿足,定義數(shù)列, , ,數(shù)列的前項(xiàng)和為, ,且.
(1) 求數(shù)列、的通項(xiàng)公式;
(2)令,求的前項(xiàng)和;
(3)數(shù)列中是否存在三項(xiàng)使成等差數(shù)列,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為實(shí)數(shù)且.
(1)設(shè)函數(shù).當(dāng)時(shí),在其定義域內(nèi)為單調(diào)增函數(shù),求的取值范圍;
(2)設(shè)函數(shù).當(dāng)時(shí),在區(qū)間(其中為自然對(duì)數(shù)的底數(shù))上是否存在實(shí)數(shù),使得成立,若存在,求實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com