【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表1:男生
表2:女生
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)選取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下邊2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
參考數(shù)據(jù)與公式:
K2=,其中n=a+b+c+d.
臨界值表:
【答案】(1);(2)沒(méi)有的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”
【解析】試題分析:(1)根據(jù)分層抽樣抽樣比相等,求出x,y的值,從表2中非優(yōu)秀學(xué)生共5人,從這5人中任選2人的所有可能結(jié)果共10種,其中恰有1人測(cè)評(píng)等級(jí)為合格”的結(jié)果共6種,故所求概率為.
(2)由1﹣0.9=0.1,p(k2>2.706)=0.10,計(jì)算K2====1.125<2.706,可得沒(méi)有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
試題解析:(1)設(shè)從高一年級(jí)男生中抽出m人,則=,m=25,
∴x=25﹣20=5,y=20﹣18=2,
表2中非優(yōu)秀學(xué)生共5人,記測(cè)評(píng)等級(jí)為合格的3人為a,b,c,尚待改進(jìn)的2人為A,B,
則從這5人中任選2人的所有可能結(jié)果為:(a,b)(a,c)(b,c)(A,B)(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共10種.
設(shè)事件C表示“從表二的非優(yōu)秀學(xué)生5人中隨機(jī)選取2人,恰有1人測(cè)評(píng)等級(jí)為合格”,
則C的結(jié)果為:(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共6種.
∴P(C)==,故所求概率為.
(2)∵1﹣0.9=0.1,p(k2>2.706)=0.10,
而K2====1.125<2.706,
所以沒(méi)有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使=成立,則稱(chēng)為的不動(dòng)點(diǎn).
⑴當(dāng)時(shí),求的不動(dòng)點(diǎn);
(2)當(dāng)時(shí),函數(shù)在內(nèi)有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不相同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋中裝有大小相同的球10個(gè),其中紅球8個(gè),黑球2個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取1個(gè).求:
(1)連續(xù)取兩次都是紅球的概率;
(2)如果取出黑球,則取球終止,否則繼續(xù)取球,直到取出黑球,取球次數(shù)最多不超過(guò)4次,求取球次數(shù)的概率分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2014山東.理15】已知函數(shù),對(duì)函數(shù),定義關(guān)于的對(duì)稱(chēng)函數(shù)為函數(shù),滿(mǎn)足:對(duì)于任意,兩個(gè)點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),若是關(guān)于的“對(duì)稱(chēng)函數(shù)”,且恒成立,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對(duì)變量t與y進(jìn)行相關(guān)性檢驗(yàn),得知t與y之間具有線性相關(guān)關(guān)系.
(1)求y關(guān)于t的線性回歸方程;
(2)預(yù)測(cè)該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2016高考江蘇卷】現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高的四倍.
(1)若則倉(cāng)庫(kù)的容積是多少?
(2)若正四棱柱的側(cè)棱長(zhǎng)為6m,則當(dāng)為多少時(shí),倉(cāng)庫(kù)的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.已知函數(shù)f(x)=x2-2x-3,若x∈[t,t+2]時(shí),求函數(shù)f(x)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的, 是的中點(diǎn).
()設(shè)是上的一點(diǎn),且,求的大小;
()當(dāng)時(shí),求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com