4.已知線段PQ兩端點(diǎn)的坐標(biāo)分別為P(-1,1)和Q(2,2),若直線l:x+my+m=0與線段PQ有交點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.[-$\frac{1}{3}$,$\frac{1}{2}$]B.[-$\frac{2}{3}$,-$\frac{1}{2}$]C.[-$\frac{2}{3}$,$\frac{1}{2}$]D.[-$\frac{2}{3}$,$\frac{2}{3}$]

分析 直線l:x+my+m=0經(jīng)過(guò)定點(diǎn)M(0,-1),利用斜率計(jì)算公式可得:kMP,kMQ,利用斜率的意義即可得出.

解答 解:直線l:x+my+m=0經(jīng)過(guò)定點(diǎn)M(0,-1),
kMP=$\frac{-1-1}{0-(-1)}$=-2,kMQ=$\frac{-1-2}{0-2}$=$\frac{3}{2}$,
∴m≠0,-$\frac{1}{m}$≥$\frac{3}{2}$,且$-\frac{1}{m}$≤-2,
解得$-\frac{2}{3}$≤m$≤\frac{1}{2}$,m≠0.
m=0時(shí)也滿足條件.
綜上可得:實(shí)數(shù)m的取值范圍是$-\frac{2}{3}$≤m$≤\frac{1}{2}$,
故選:C.

點(diǎn)評(píng) 本題考查了直線經(jīng)過(guò)定點(diǎn)、斜率計(jì)算公式及其意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=cos2x+2sinxcosx,則下列說(shuō)法正確的是( 。
A.若f(x1)=f(x2),則x1+x2=kπ
B.f(x)的圖象關(guān)于點(diǎn)$({-\frac{3π}{8},0})$對(duì)稱
C.f(x)的圖象關(guān)于直線$x=\frac{5π}{8}$對(duì)稱
D.f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后得$g(x)=\sqrt{2}sin({2x+\frac{3π}{4}})$的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.曲線f(x)=x3+2x+3在(1,f(1))處的切線方程為5x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知平面α截一球面得圓E,過(guò)圓心E且與α成135°二面角的平面β截該球面得到圓F.若該球的半徑為5,圓E的面積為9π,則圓F的面積為(  )
A.15πB.17πC.19πD.21π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn)O,其圖象關(guān)于x軸對(duì)稱,且經(jīng)過(guò)點(diǎn)M(2,2).
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)M作拋物線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1,k2變化且滿足k1+k2=-1時(shí),證明直線AB恒過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,AC1與BD1相交于點(diǎn)O,則有(  )
A.$\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}={a^2}$B.$\overrightarrow{AB}•\overrightarrow{A{C_1}}=\sqrt{2}{a^2}$C.$\overrightarrow{AB}•\overrightarrow{AO}=\frac{{\sqrt{3}}}{2}{a^2}$D.$\overrightarrow{BC}•\overrightarrow{D{A_1}}={a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,角A,B,C所對(duì)的邊為a,b,c.已知a=2c,且A-C=$\frac{π}{2}$.
(1)求sinC的值;
(2)當(dāng)b=1時(shí),求△ABC外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)α∈(0,$\frac{π}{2}$),且$sinα-cosα=\frac{1}{5}$
(1)求sin2α及sinα,cosα的值;
(2)設(shè)f(x)=5cos(2x-α)+cos2x(x∈R)
①求f(x)的最小正周期和圖象的對(duì)稱中心坐標(biāo);
②求f(x)在區(qū)間$[-\frac{11π}{24},-\frac{5π}{24}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知A,B,C是球面上三點(diǎn),且AB=6,BC=8,AC=10,球心O到平面ABC的距離等于該球半徑的$\frac{1}{2}$,則此球的表面積為$\frac{400}{3}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案