11.下列函數(shù)中以π為周期,在(0,$\frac{π}{2}}$)上單調(diào)遞減的是( 。
A.y=(cot1)tanxB.y=|sinx|C.y=-cos2xD.y=-tan|x|

分析 利用三角函數(shù)的周期性和單調(diào)性,逐一判斷各個選項是否正確,從而得出結(jié)論.

解答 解:由于y=tanx的周期為π,0<cot1<1,
故y=(cot1)tanx的周期為π,且在(0,$\frac{π}{2}}$)上單調(diào)遞減,故A滿足條件.
由于y=|sinx|在(0,$\frac{π}{2}}$)上單調(diào)遞增,故排除B.
由于在(0,$\frac{π}{2}}$)上,2x∈(0,π),函數(shù)y=-cos2x在(0,$\frac{π}{2}}$)上單調(diào)遞增,故排除C.
由于函數(shù)y=-tan|x|不是周期函數(shù),故排除D,
故選:A.

點評 本題主要考查三角函數(shù)的周期性和單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列4個命題:
①在△ABC中,“cosA+sinA=cosB+sinB”是“A=B”的充要條件;
②b2=ac是a,b,c成等比數(shù)列的充要條件;
③若loga2<logb2<0,則a>b;
④若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈($\frac{π}{4}$,$\frac{π}{2}$),則f(sinθ)>f(cosθ);  
其中真命題的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=tan($\frac{x}{3}$+$\frac{π}{4}$)的最小正周期為( 。
A.$\frac{π}{3}$B.C.$\frac{2π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線C1:y2=4$\sqrt{3}$x的焦點為F,其準線與雙曲線C2:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)相交于A,B兩點,雙曲線的一條漸近線與拋物線C1在第一象限內(nèi)的交點的橫坐標為$\sqrt{3}$,且△FAB為正三角形,則雙曲線C2的方程為$\frac{x^2}{2}-\frac{y^2}{8}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若arcsinx-arccosx=$\frac{π}{6}$,則x=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,類似于中國結(jié)的一種刺繡圖案,這些圖案由小正方形構(gòu)成,其數(shù)目越多,圖案越美麗,若按照前4個圖中小正方形的擺放規(guī)律,設(shè)第n個圖案所包含的小正方形個數(shù)記為f(n).
(1)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)的關(guān)系,并通過你所得到的關(guān)系式,求出f(n)的表達式;
(2)計算:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+$\frac{1}{f(4)-1}$的值,猜想$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$的結(jié)果,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若點P是拋物線C:y2=4x上任意一點,F(xiàn)是拋物線C的焦點,則|PF|的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點H(-6,0),點P(0,b)在y軸上,點Q(a,0)在x軸的正半軸上,且滿足$\overrightarrow{HP}$⊥$\overrightarrow{PQ}$,點M在直線PQ上,且滿足$\overrightarrow{PM}$-2$\overrightarrow{MQ}$=$\overrightarrow{0}$,
(Ⅰ)當(dāng)點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)過點T(-1,0)作直線l與軌跡C交于A、B兩點,線段AB的垂直平分線與x軸的交點為E(x0,0),設(shè)線段AB的中點為D,且2|DE|=$\sqrt{3}$|AB|,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求過點(0,4)且與橢圓9x2+4y2=36有相同焦點的橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案