3.若點P是拋物線C:y2=4x上任意一點,F(xiàn)是拋物線C的焦點,則|PF|的最小值為( 。
A.1B.2C.3D.4

分析 設P(x0,y0)(x0≥0),可得|PF|=x0+$\frac{p}{2}$,即可得出最小值.

解答 解:設P(x0,y0)(x0≥0),則|PF|=x0+$\frac{p}{2}$=x0+1≥1,當且僅當x0=0時取等號.
∴|PF|的最小值為1.
故選:A.

點評 本題考查了拋物線的定義及其標準方程性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.學校對高二、高三年級的1000名男生的體重進行調(diào)查,設每個男生的體重為x公斤,調(diào)查所得數(shù)據(jù)用如圖所示的程序框圖處理,若輸出的結(jié)果是380,則體重在60公斤(包括60公斤)以內(nèi)的男生的頻率是( 。
A.380B.620C.$\frac{19}{50}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在下列命題中,真命題是(1)(2)(寫出所有真命題的序號)
(1)互為反函數(shù)的兩個函數(shù)的單調(diào)性相同;
(2)y=f(x)圖象與y=-f(-x)的圖象關于原點對稱;
(3)奇函數(shù)f(x)必有反函數(shù)f-1(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)中以π為周期,在(0,$\frac{π}{2}}$)上單調(diào)遞減的是( 。
A.y=(cot1)tanxB.y=|sinx|C.y=-cos2xD.y=-tan|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.過原點的直線與雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)交于M,N兩點,P是雙曲線上異于M,N的一點,若直線MP與直線NP的斜率都存在且乘積為$\frac{5}{4}$,則雙曲線的離心率為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若某多面體的三視圖如圖所示(單位:cm),
①則此多面體的體積是$\frac{5}{6}$cm3,
②此多面體外接球的表面積是3πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x+$\frac{1-a}{x}$-alnx,a∈R.
(Ⅰ)討論函數(shù)f(x)極值點的個數(shù);
(Ⅱ)如果區(qū)間[1,e](e=2.71828…)上總存在一點x0,使x0+$\frac{1}{x_0}$<a(lnx0+$\frac{1}{x_0}$)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知定義在R上的函數(shù)f(x)=ax3+bx+1(a、b∈R且a≠0),若f(2)=3,則f(-2)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知p:直線y=(2m+1)x+m-2的圖象不經(jīng)過第四象限,q:方程x2+$\frac{{y}^{2}}{1-m}$=1表示焦點在x軸上的橢圓,若(¬p)∨q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案